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Abstract—As high-performance computing systems continue to
advance, the gap between computing performance and I/O capa-
bilities is widening. This bottleneck limits the storage capabilities
of increasingly large-scale simulations, which generate data at
never-before-seen granularities while only being able to store a
small subset of the raw data. Recently, strategies for data-driven
sampling have been proposed to intelligently sample the data in
a way that achieves high data reduction rates while preserving
important regions or features with high fidelity. However, a
thorough analysis of how such intelligent samples can be used for
data reconstruction is lacking. We propose a data-driven machine
learning approach based on training neural networks to recon-
struct full-scale datasets based on a simulation’s sampled output.
Compared to current state-of-the-art reconstruction approaches
such as Delaunay triangulation-based linear interpolation, we
demonstrate that our machine learning-based reconstruction has
several advantages, including reconstruction quality, time-to-
reconstruct, and knowledge transfer to unseen timesteps and grid
resolutions. We propose and evaluate strategies that balance the
sampling rates with model training (pretraining and fine-tuning)
and data reconstruction time to demonstrate how such machine
learning approaches can be tailored for both speed and quality
for the reconstruction of grid-based datasets.

Index Terms—computing methodologies, modeling and simu-
lation, simulation types and techniques, scientific visualization,
computing methodologies, machine learning, machine learning
approaches, neural networks.

I. INTRODUCTION

As high performance computing (HPC) workflows begin
to utilize exascale computing, the gap between the ability of
such systems to produce massive amounts of data and existing
networks to efficiently transport and store such data continues
to widen. Scientific simulations can produce petabytes of data

at each timestep with very high spatial and temporal resolution.
Disk I/O is the bottleneck, as the time it takes to transport,
store, and post-process the data is far outpacing the time it
takes to produce it.

Data sub-sampling is a widely applied data reduction
method that selects a subset of the dataset for storage. Several
in situ sampling strategies that have been studied in the
context of scientific simulations, including stratified random
sampling [1], bitmap indexing [2], and adaptive sampling [3].
However, as HPC continues to include exascale machines,
sampling strategies are becoming more aggressive—storing
as little as 1% or even 0.1% of the data at each timestep.
Recent sampling strategies [4], [5] are addressing this by
weighting the importance given to data points when perform-
ing sampling. In this way, important data-driven features can
be preserved when higher importance is assigned to the points
associated with (or nearby to) potential features, which is
important particularly for visualization tasks such as volume
rendering and isosurface contouring, while allowing very low
sampling rates.

The inverse of data sampling is data reconstruction: going
from a sampled dataset back to the full-resolution dataset. For
scientific simulations, a primary consideration of reconstruc-
tion is not only to obtain as similar a result to the original
data as possible, but also to preserve important data features.
Intrinsically, reconstruction algorithms imbue some amount of
noise in the reconstructed data. A reconstruction algorithm is
considered poor if the amount of noise added to the reconstruc-
tion is higher than the signal value present. As an example,
linear interpolation based on Delaunay triangulation [5] is a



Fig. 1. The high-level workflow of our data-driven machine learning-based approach to reconstruct 3D volume datasets from sampled data. (a) Given an
input regular grid dataset, (b) a sampled dataset is generated from it, and (c) a fully connected neural network is trained over the features extracted from the
void locations. (d) The trained network is tested over varying sampling percentages, timesteps and at higher resolutions.

popular and well-regarded reconstruction algorithm with good
signal-to-noise performance. However, it can suffer from two
issues: (1) Its time complexity, which can increase rapidly
with sampling percent, making it unsuitable for large-scale
datasets such as those increasingly found in HPC scientific
simulations. (2) It assumes a linear relationship within each
cell while performing interpolation, which can result in sub-
optimal results for regions with complex topology and high
gradients.

Recently, machine learning (ML) and artificial intelligence
(AI) approaches have been proposed for reconstruction [6], [7],
employing complex deep learning architectures to predict a
high-resolution data from a low resolution data. Thus far, such
methods have been primarily applied to datasets that are highly
structured and complete, i.e. where each data point has all the
spatial and physical features present and thus can be easily
defined. To illustrate this, lets assume that a dataset is sampled
to store 1% of its data points, the remaining 99% of data points
are discarded. In the sampling scenario, we lose the spatial
features for even those 1% of data points since we now are
dealing with missing data. The task of retrieving the missing
99% of data points (which we refer to as void locations) is non-
trivial because the sampled data is now an unstructured point
cloud. Performing convolution or using any machine learning
algorithm which takes an image as input is not suitable. The
result is that the existing AI/ML reconstruction approaches
are incompatible with the aggressive sampling strategies being
developed as part of exascale computing workflows.

This motivates the work described in this paper: to develop
and test the capabilities of a machine learning strategy to
reconstruct from unstructured data, both with higher quality
and for large datasets that are sampled with highly aggres-
sive strategies. Specifically, we are concerned with scientific
simulations that are spatiotemporal in nature. These types
of simulations are widespread, and due to their increasing
resolution (as HPC systems advance and scale), they will soon
necessitate aggressive sampling strategies that may only be
able to preserve 0.1% or 1% of all raw data points at each
timestep.

In this paper, we investigate fully connected neural net-
works (FCNNs) for reconstruction of unstructured sampled
datasets that are used as input and structured reconstructed

volume datasets are produced as output. For a comprehensive
analysis of the reconstruction strategies, we employ popular
point cloud-based reconstruction approaches that are based
on Delaunay triangulation-based linear interpolation, nearest-
neighbor, natural neighbors, radial basis function, Sheperd
interpolation schemes, etc. (see Section III-B). After showing
that Delaunay triangulation-based linear interpolation per-
forms the best (as per reconstruction quality) amongst the
existing approaches, we use it as a baseline for further
comparison with our proposed FCNN approach. We test
these approaches using three well-known scientific simulation
benchmark datasets: Hurricane Isabel [8], combustion data [9],
and the Ionization Front dataset [10] in a trio of experiments:
(1) reconstruction based on varying the sampling percent for
a single timestep, (2) training the FCNN on a single timestep
and then reconstructing the dataset over multiple timesteps and
(3) training on a low resolution dataset and reconstructing at
higher resolutions.

Compared to Delaunay triangulation (or any other existing
rule-based method), the FCNN approach has both advantages
and disadvantages. The primary concern is initial training cost:
as the size of a sampled dataset increases, the time required
to train a model (pretraining) will also increase. However,
the FCNN approach holds major advantages. A key finding
in our experiments is that a neural network trained on one
timestep (pretrained network) can effectively reconstruct at
different sampling percentages of that timestep. This means
that an FCNN can be trained once, and then reconstruct a
simulation at different sampling percentages. We consistently
see across the three studied datasets that our pretrained FCNNs
maintain this key feature as well as overall high performance
in comparison to Delauany triangulation, indicating that they
provide a generalizable technique that can be adopted and
replicated across scientific datasets.

Further, with very little fine-tuning, this pretrained model
can be used in subsequent timesteps and also across different
resolutions of a given simulation, still yielding much higher
accuracy compared to the existing methods. Put another way,
the cost of pretraining an FCNN can be amortized by usage on
subsequent timesteps and resolutions. In contrast, rule-based
methods like Delaunay triangulation must reconstruct from
scratch at every timestep, yet does not produce the quality



that an FCNN can.
To summarize, the main contribution of our work are

threefold:
• We develop a data-driven machine learning approach to

convert unstructured sampled data to structured volume
datasets with higher quality and rapid processing times
compared to the current state-of-the art.

• We perform a comprehensive study of existing point
cloud reconstruction strategies to explore the trade-offs
between time complexity vs quality.

• We evaluate the robustness of our deep learning approach
over different datasets, sampling percentages, timesteps,
and reconstruction resolutions with minimal retraining of
the neural network.

II. RELATED WORK

Deep Learning in Scientific Visualization. In recent years
there has been a steep increase in the use of various deep
learning to address challenges in scientific visualization. Sev-
eral studies include upscaling volume resolution by various
sophisticated ML techniques. Zhou et al. [11] used a con-
volutional neural network (CNN) to achieve better quality
upscaled resolution. The method has been proven to be better
than traditional trilinear or cubic spline methods. Guo et al.
proposed Ssr-vfd [6] which produces a spatially coherent high
resolution data for vector field data by using three different
neural networks. Following a similar line of work, Weiss et al.
proposed [7] an image-space reconstruction of low-resolution
images of isosurfaces to higher resolutions.

Another work which focuses on super resolution data gener-
ation is Han et al. [12], which uses a recurrent generative net-
work (RGN) to generate high resolution volumes for temporal
datasets from low resolution ones. It uses a generative network
to produce volumes which then a discriminator decides the
realness for. The network interpolates between two immediate
volume sequences to give an output. Papers such as [13] and
[14] focus on synthesizing volume by analyzing and playing
around with the transfer functions. The former paper lets a user
explore a latent space which encodes the effect of changing
the transfer function on a volume rendering. This lets the user
explore, analyze and generate volume data without an explicit
mention of the transfer function. The latter paper avoids the
exploration of transfer function so as to decrease cognitive
load by training a deep neural network to obtain a goal effect
image to obtain renderings under different viewing parameters
without explicitly knowing the transfer function.

A similar paper in the lines of exploring the parameter space
was proposed by He et al. [15] which is meant to generate vol-
ume data by exploring the parameter space for large ensemble
simulations. Variations in simulation parameters under various
visualization settings can help create new images. Hong et
al. [16] used long short term memory (LSTM) based recurrent
neural network (RNN) models to estimate the access patterns
for parallel particle tracing in distributed environments. Using
their trained model they predicted the next block to load while
performing distributed particle tracing.

Several papers on flow field datasets have also been pub-
lished which make use of several deep learning techniques.
Han et al. [17] proposed an autoencoder framework to learn
to cluster flow lines and surfaces. The autoencoder network
learns the later feature descriptors from binary volumes gen-
erated from a flow field dataset. This paper also offers an
interactive visualization tool to explore the flow lines and
surfaces. Also an amalgamation for high resolution data for
flow datasets was proposed by Xie et al [18] as TempoGAN
which uses a temporal discriminator in addition to a spatial
generator which preserves the data’s temporal coherence. Wei-
wel et al. presented [19] an LSTM-based approach to predict
dense volumetric time varying physical functions. However in
all the mentioned methods, the data is structured and has no
missing data points to deal with, thus enabling the usage of
sophisticated machine learning techniques.

Sampling-based Visualization. Data sampling methods
have been widely used in the scientific visualization com-
munity to reduce the size of large-scale data sets. Woodring
et al. [1] proposed a stratified random sampling based algo-
rithm for cosmology simulations to enable interactive post-
hoc visualization. Su et al. [2] extended stratified sampling
by incorporating value-based segmentation alongside spatial
partitioning. Their method preserves both the value distribu-
tion and entropy of the original dataset, showing improved
accuracy over random sampling and K-D tree based sam-
pling for small bin sizes. Nouanesengsy et al. [3] developed
Analysis-Driven Refinement (ADR), which uses user-defined
importance metrics to select a sparse dataset for fast post-hoc
analysis and visualization. Their approach employs either top-
down or bottom-up subdivision schemes, considering space,
field values, and time dimensions. Park et al. [20] proposed a
visualization aware sampling technique which could produce
an accurate complete visualization for scatter plot and map
plot based visualizations. However this technique is specific
for these visualization types, and does not generalize to 3D
scientific simulation data.

In another work, Nguyen and Song [21] used a centrality-
driven clustering approach to improve random sampling. Some
other works which utilize information quantification tech-
niques such as entropy have been proposed for sampling
scientific datasets. Dutta et al. [22] proposed a point wise
mutual information based approach for multivariate sampling
to identify regions with high mutual information among the
variables. Rapp et al. [23] proposed a method for scattered
datasets which extracts a sample of points while preserving
its blue noise properties. Biswas et al. [4], [5] proposed an
in situ sampling technique which preserves important data
features along with the gradient properties. This technique
also ensures the extraction of important data features given
a storage constraint. We tested this sampling method across
various datasets and it showed good reconstruction quality
when using Delaunay’s method. We thus utilize the Biswas
et al. [5] technique for all data sampling conducted in this
work. Recent surveys, such as Di et al. [24], have highlighted
sampling as one of the fastest approaches for data reduction



(a) Original data (b) Reconstruction
via FCNN

(c) Reconstruction
via linear approach

Fig. 2. This figure shows how reconstruction quality for the combustion
dataset (for 1% sampling percentage) differs between FCNN and Delaunay
triangulation.

in scientific visualization, particularly in the context of error-
bounded lossy compression for scientific data.

While these existing approaches in machine learning and
sampling-based visualization have made significant contribu-
tions, they are often limited when dealing with aggressively
sampled, unstructured data from large-scale scientific simula-
tions. This gap motivates our exploration of a novel FCNN-
based approach that can effectively reconstruct full-resolution
datasets from sparse, unstructured samples while maintaining
high quality and efficiency across various sampling rates,
timesteps, and resolutions.

III. METHODOLOGY

Figure 1 shows a high-level illustration of our proposed
strategy. To learn the underlying features, we first extract a
training dataset based on a sampled dataset and use this to train
a fully connected neural network (FCNN). We test the capa-
bilities of this trained model by experimenting with differing
(1) sampling percentages, (2) timesteps for a single sampling
percentage, and (3) data resolutions. For these experiments,
we compare the reconstruction results using our FCNN model
to the other available reconstruction strategies.

In this section, we first introduce the experimental datasets
that we use for testing and evaluating the different reconstruc-
tion strategies. Next, we give a brief overview of FCNNs
in the context of regression (predicting continuous values)
and describe our specific FCNN implementation. We conclude
this section with a brief overview of the feature engineering
considerations for our FCNN approach (see Section V for
more discussion on this).

A. Experimental Datasets

We employ three well-known scientific simulation datasets
to test our neural network-based reconstruction. These datasets
are representative of the types of data seen in scientific
computing. For each dataset, we select an important scalar
attribute to sample and reconstruct.

Hurricane Isabel: The Hurricane Isabel dataset [8] simu-
lates the development of a hurricane in the West Atlantic re-
gion. It consists of eleven varying scalar and vector attributes.
We test our method using the pressure attribute, which is
indicative of the a hurricane’s intensity [25]. This dataset has

(a) Original data (b) Reconstruction
via FCNN

(c) Reconstruction
via Natural Neigh-
bors

Fig. 3. This figure shows how reconstruction quality for the Ionization Front
dataset (for 1% sampling percentage) differs between FCNN and natural
neighbors method.

a resolution of 250 × 250 × 50 over 48 timesteps. Figure 1
contains images of the Hurricane Isabel dataset. The eye of
the hurricane—a very low pressure area—is the circular area
in each sample image.

Combustion: The combustion dataset [9] simulates a tur-
bulent combustion process. It consists of five scalar attributes.
We test using the Mixfrac variable, which is the proportion of
fuel and oxidizer mass. This attribute can indicates the flame’s
location where the chemical reaction rate exceeds the turbulent
mixing rate. For our experiements, we use the combustion data
that has a resolution of 240 × 360 × 60 over 122 timesteps.
Figure 2(a) shows an example of the combustion dataset.

Ionization Front Instabilities: The Ionization Front Insta-
bilities dataset [10] simulates the propagation of an ionization
front through neutral hydrogen gas. It consists of eleven vary-
ing scalar and vector attributes. The dataset has a resolution of
600× 248× 248 over 200 timesteps. We use the density field
for our experiments, as it shows the structure and evolution of
the ionization front over time. The density values range from
very low in the ionized regions to higher values in the neutral
gas and compressed shell ahead of the front.

B. Reconstruction of Sampled Point Cloud

Several methods exist for reconstructing sampled point
cloud data into a continuous field. We briefly describe some
of the most common approaches:

• Piecewise Linear Interpolation: This method typically
uses Delaunay triangulation of the sampled points and
performs linear interpolation within each triangle or
tetrahedron. It may result in artifacts at the triangle
boundaries.

• Natural Neighbor Interpolation: Also known as Sib-
son’s method, this approach uses the concept of natural
neighbors based on Voronoi diagrams. As described by
Park et al. [26], traditional implementations are compu-
tationally expensive, but discrete approaches have been



developed to improve efficiency while maintaining the
method’s smooth interpolations.

• Modified Shepard Interpolation: This inverse distance
weighting method, an improvement over the original
Shepard’s method, uses only a subset of neighboring
points and modifies the weighting function. It provides
a balance between smoothness and local feature preser-
vation, and is implemented in python packages such as
photutils [27].

• Nearest Neighbors: This method assigns to each grid
point the value of the nearest sampled point. While
computationally efficient, it can result in discontinuities
and a blocky appearance, especially with sparse sampling.

• Radial Basis Functions (RBFs): RBFs, such as thin-
plate splines, can provide smooth interpolations [28].
However, they are often computationally impractical for
large datasets and may produce poor results in some
cases, especially when dealing with scattered data or
extrapolation. For our experiments, we will not consider
RBFs as the time taken by them is much larger than the
rest of the methods, and it does not offer any noticeable
improvement in reconstruction quality over linear inter-
polation.

C. An Overview of Our Fully Connected Neural Network

Fully connected neural networks, or FCNNs, are a class of
artificial neural networks where the architecture is such that
all the nodes (or neurons) in each layer Li are connected to
the nodes (neurons) in the next layer Li+1. An FCNN with n
layers has three types of layers: (1) An input layer (L1) whose
values are provided, normally described as an input feature
vector. (2) A set of intermediate hidden layers (L2 − Ln−1)
whose values are derived from previous layers. (3) An output
layer (Ln) whose values are derived from the last hidden
layer. In our case, we are interested in predicting continuous
numerical values (regression).

Iteratively calculating the values of neurons at each layer
till we reach the output layer is called forward propagation.
In our case, we used ReLU activation. To train an FCNN, the
final outputs of a model for data items computed via forward
propagation are compared to a ground truth based on an error
or loss function. We use mean square error (MSE) to calculate
the loss.

E =
1

n

n∑
i=1

(yi − ŷi)
2

By minimizing the calculated error, the weights between neu-
rons are optimized via a process called back propagation—this
is the “learning” part of the neural network. Back propagation
computes the error gradients of each neuron, iteratively for
each layer from the output layer backwards. We use the
learning rate of 0.001 and the adam optimizer for our network.

D. Training Dataset and FCNN Architecture

Now we describe the feature engineering part of the FCNN,
which is a non-trivial task for predicting the missing values.
During a large-scale scientific simulation, it is reasonable that

Fig. 4. The process to create a training dataset is as follows: (a) Extract
void location values, and (b) for each, find the five nearest sampled points.
(c) The x, y and z coordinates of each of the five nearest sampled points, the
coordinates of the corresponding void point and the scalar values associated
with those five sampled points is concatenated to form a [1×23] input feature
vector. (d) The training data created is then sent as an input to the FCNN to
give a reconstructed data as an output.

the full-resolution dataset is only available for the current
timestep (this is common for in situ workflows). Therefore,
training data should be confined to a single available timestep.
Figure 4 shows the workflow we use to train an FCNN for
scientific data reconstruction.

The dataset’s grid points for the timestep are divided into
two groups, sampled points and void locations, based on
whether or not each grid point is included in the sampling
set. By void locations, we refer to grid points in the dataset
which were rejected by the sampling algorithm. Such void
or empty grid locations lack the scalar value which acts like
missing data and essentially the task of reconstruction is to
predict these missing values. As discussed in Sec IV-A, for our
experiments we use the state-of-the-art sampling method from
Biswas et al. [5], though our approach is sampling method
agnostic.

For feature engineering, we adopt an approach that is
inspired by the k-nearest neighbor algorithm. For each void
location from the set of rejected points, the five nearest
sampled points are identified and a [1 × 23] feature vector is
created consisting of (1) the x, y, and z coordinates and scalar
values for each of the five closest sampled points (feature size
= 5 ∗ 4 = 20) and (2) the x, y, and z coordinates of the
void location itself (feature size = 3). The FCNN’s input layer
therefore consists of 23 (= 20 + 3) neurons corresponding to
the [1×23] vector created for each void point. The output layer
predicts a [1× 4] vector: the scalar value and the x, y, and z
gradients of the void locations. The combined set of input and
output vectors for all void locations constitutes the training
dataset for the FCNN. For the FCNN architecture (Figure 5),



five hidden layers are used.

Fig. 5. The FCNN architecture that we utilize is composed of five hidden
layers of size 512–16, and outputs a scalar value as well as the x-, y-, and
z-gradients for a void location. This figure also shows the two approaches
of performing fine-tuning from a pre-trained model. Case 1: we set all the
layers as trainable and this enables us to perform fewer epochs (10 epochs)
to fine-tune to the new unseen data. Case 2: we set only the last two layers
trainable that enables lower storage across new timesteps (if we want to carry
around models for all the time steps) but requires more epochs (≈300-500
epochs) of fine-tuning to achieve similar accuracy as Case 1.

E. Selecting and Tuning the FCNN

The previous subsection describes the “final” FCNN ar-
chitecture (also shown in Figure 5) we employ for data
reconstruction in this paper. Here, we briefly address why
FCNNs are selected as an architecture, the feature engineering
employed for the training dataset (i.e., creating the [1 × 23]
vector using the five sampled points closest to each unsampled
grid point), and the architectural considerations for the FCNN.

Fig. 6. Average SNR values when
varying the number of hidden lay-
ers on the Hurricane Isabel dataset.

Why FCNNs? FCNNs
are sometimes considered as
“straightforward” or “simple”
neural network architectures, as
each layer is fully connected,
they do not contain specialized
layers (convolutional layers,
pooling layers, etc.), and
neurons do not incorporate any
notion of temporal sequence.
Despite this, FCNNs provide
an appropriate model space for exploring reconstruction,
in contrast to more complex models such as CNNs and
RNNs. This is due to two key points: (1) The aggressive
sampling strategies employed for scientific computing result
in unstructured point-based datasets with a large number of
void or missing data points. CNNs, which are widely used
for images, generally require complete and structured data
for pooling and convolution functions. (2) For large-scale
simulations running on distributed HPC resources, it is
impractical to store multiple timesteps for training models.
Deep learning models that are trained in situ cannot take
advantage of dataset temporality, which is the key feature of
RNNs.

Choosing an appropriate number of hidden layers.
Model complexity can have a large effect on the overall
performance of the neural network. For example, a very
simplistic model might underfit the data, resulting in high

training error. In contrast, an overly complex model might
overfit, resulting in a very low train error but an extremely high
test error (ultimately making the model not generalizable).
Along these lines, a large number of hidden layers has the
potential to not just capture the data feature dynamics, but also
to capture spurious statistical noises or biases in the data [29]

To find the appropriate number of hidden layers, we tested
reconstructions with different numbers of hidden layers (be-
tween one and nine hidden layers). Figure 6 shows the
results for the Hurricane Isabel dataset. Reconstruction quality
(measured as signal-to-noise ratio, or SNR, see Section IV) is
plotted against the number of hidden layers in the FCNN. The
SNR for both one hidden layer (SNR≈ 20) and nine hidden
layers (SNR≈ 25) is lower than for five layers (SNR≈ 28).
Our assumption is that an FCNN with one hidden layer
does not learn the features very well because of a high bias
(too simple of a model). In contrast, an FCNN with nine
layers likely overfits the training data. In addition, a larger
model increases the FCNN’s training time. Five hidden layers
achieves high quality while minimizing training time and the
potential to overfit.

Fig. 7. Average SNR values when
training on different sampling per-
centages on the Hurricane Isabel
dataset.

Sampling points. Sampling
percentage refers to the total
percent of data points that are
saved in relation to the dataset.
As the sampling percentage in-
creases, sampled points will
generally be closer to each
other, while decreasing sam-
pling percentage will result in
sampled points being farther
apart. Our assumption is that
an FCNN will, when weights
are assigned to features, em-
ploy higher weights to sampled points that are closest to the
void location, compared to sampled points which are farther
away. We want the FCNN to provide good reconstruction
results for these void locations over a range of sampling
percentages, which might range from sub-1% to 5% or 10%
of the original dataset.

Figure 7 shows how varying the sampling percentage during
training affects reconstruction quality (SNR) when performing
reconstruction for different sampling percents on the Hur-
ricane Isabel dataset. When the model is trained on a 1%
sampling of the data (orange line) and used to reconstruct
a dataset that has been sampled at 1% or lower, SNR values
are high, but reconstruction quality flatlines as the sampling
percentage increases to 3% and higher. The reason is that
as sampling percent increases, the distance between sampled
points decreases. This behavior is not captured well using a
1% trained model, which assumes sampled points are spaced
far apart. The opposite effect occurs when the model is trained
on 5% of data (green line). Data reconstruction using higher
sampling percentages (4% and higher) have high SNR, but
at lower sampling percentage the model fails to capture the
large distances between sampled points. As a solution, we



tested combining data points from both the 1% and 5%
sampling percentages into a concatenated dataset (pink line).
This “1%+5% model” provided good results at both ends of
the sampling spectrum, and is what is used in our FCNN
design.

Fig. 8. SNR values for gradient vs
no gradient scenarios in the output
layer of the FCNN.

Gradients in Output
Layer: Incorporating gradient
values along with the scalar
values in the output layer helps
achieve better reconstruction
quality as compared to when
utilizing only the scalar values.
By including gradient values
in the output layer, the FCNN
model is forced to take into
consideration the neighbouring
locations’ values while predicting the scalar value at a given
location. For example, two different spatial locations can have
the same scalar values, but depending on the distribution of
the data features, they may have different gradient values.
Our FCNN approach takes this factor into account when
reconstructing the full scalar fields from sampled points.
Figure 8 shows the result of an experiment we performed to
empirically verify the influence of producing gradient values
in the output layer. We performed this study by removing
the gradient neurons from the output layer to compare the
reconstruction quality with our proposed FCNN. The pink
and the green curves correspond to the SNR values of
reconstruction with increasing sampling percentage for “with
gradient” and “without gradient” networks respectively. As
can be seen, having the gradients in the output layer improves
the overall reconstruction quality of our FCNN model.

IV. EXPERIMENTS AND RESULTS

We test our FCNN approach against existing point cloud
reconstruction approaches to reconstruct from sampled data
back to a full-resolution dataset. To calculate the reconstruc-
tion quality, we use the popular signal-to-noise ratio (SNR)
defined as follows:

SNR = 20 ∗ log10
σraw

σnoise

Here, σraw is the standard deviation of the original data
and σnoise is the standard deviation of the noise in the
reconstructed data. Noise in a dataset is the difference among
the values of the original data and the reconstructed data. A
good reconstruction is represented by having a lower noise,
which means the reconstructed image is similar to the original
data. Thus, a well reconstructed image has higher SNR.

In general, for all the methods, a higher sampling percentage
will lead to a better reconstruction. To investigate this, we
perform three different experiments. We are interested not only
in seeing if FCNN has a better reconstruction quality than
the others, but want to see the time required by our FCNN
approach to reconstruct the dataset.

A. Testing Setup

We conducted our experiments using the Darwin HPC
cluster at Los Alamos National Laboratory. This compute
cluster contains approximately 350 heterogeneous compute
nodes. For our experiments, we used a single compute node
containing 64 CPU cores and two NVIDIA A100 GPUs. When
conducting experiments, we first use the sampling technique
by Biswas et al. [5] to sample the data for a given sampling
percentage (between 0.1% and 5%). This converts the original
regular grid dataset, stored as a .vti file (XML Image data),
into a point cloud dataset stored using the .vtp file format
(XML Poly data). All the reconstruction methods are applied
on this sampled dataset, and output the reconstructed dataset
as .vti format (regular grid). To calculate SNR, we compare
scalar values in the reconstructred .vti file to the true scalar
values in the original .vti file(s).

B. Experiment 1: Varying Sampling Percentages

The first experiment compares reconstruction quality over
different sampling percentages (also called sampling ratios) at
a single timestep. We trained the FCNN model as explained
in Section III. We then tested reconstruction on the three
datasets with sampling percentages from 0.1% to 5%. Figure 9
shows the reconstruction quality and Figure 10 shows the
corresponding time to reconstruction.

For all the methods, reconstruction quality generally in-
creases as the sampling percentage increases. At 0.1% sam-
pling percentages, FCNN, linear and natural neighbor ap-
proaches have comparable SNR. However, SNR is generally
higher for FCNN. Natural neighbor and linear approaches are
comparable at lower sampling percentages, and as we increase
the sampling percentage, linear generally outperforms natural
neighbor approach. Shepard and nearest neighbors approaches
consistently yield lower quality.

In analyzing reconstruction time, we first note that Figure 10
does not include model training time—this is considered in
Section V. For a trained FCNN, reconstruction occurs in
constant time (with respect to the full dataset size) and is
independent of the sampling percent. This highlights a key
benefit to this experiment: the flexibility of FCNNs. For each
dataset, we use a single FCNN to reconstruct across all sam-
pling percentages. For all datasets, we see that FCNN’s speed
is comparable with nearest neighbor approach and parallelized
version of linear interpolation using C++, CGAL and OpenMP.
While linear interpolation provided one of the best SNR
values among the traditional reconstruction methods, its initial
sequential implementation in Python was much slower than
other methods. The parallelized version was implemented to
address this, leading to speedups that scaled with the number
of processing units.

C. Experiment 2: Testing Over Multiple Timesteps

Next we show how an FCNN pretrained on one timestep
can be used to reconstruct on other timesteps with and without
fine-tuning. We focus on the Hurricane Isabel dataset (using a
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Fig. 9. Reconstruction quality (SNR) for FCNN, linear, natural neighbor, Shepard and nearest neighbor approaches at different sampling percentages for a
single timestep t. The two purple lines show the sampling percentages (1% and 5%) used by the FCNN approach while making predictions.
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Fig. 10. Reconstruction time in seconds for FCNN, linear (both naive sequential and OpenMP CGAL implementations), natural neighbor, Shepard and nearest
neighbor approaches at different sampling percentages for a single timestep t. Since naive linear method implementations scale poorly with data size, our
CGAL implementation is necessary for handling large-scale data.
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Fig. 11. This figure shows reconstruction quality for the Hurricane Isabel
dataset over its 48 timesteps using a 3% sampling percentage at each timestep.

3% sampling percentage) as this simulation showcases a com-
plex weather pattern with features that change significantly
over the course of the run as the hurricane moves across the
Gulf of Mexico and makes landfall.

For fine-tuning, we adopt two approaches: Case 1 is full
layer retraining to new time steps, and Case 2 is transfer
learning via two layer retraining (this is shown in Figure 5).
For Case 1, we only perform retraining for a few epochs (≈10
epochs) to fine-tune to the new time step. For Case 2, to reach
the accuracy of Case 1, we need to perform more than 300
epochs. Compared to how fast we can fine-tune to the new
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Fig. 12. Loss progression across epochs for a) full training and b) fine-tuning.

time step, there is a trade-off involved in the size of the model.
For Case 1, if we want to store all the models across all the
time steps, we will need to carry each time step’s individual
fine-tuned model. For Case 2, since only the last two layers
change from one time step to the other, only the first timestep
needs to store the full model and for the remaining time steps,
we can just store the last two layers. Further, for Case 1, since
we are able perform very fast fine-tuning of around 10 epochs,
there is generally no need to store individual models. We can
store one model and then quickly fine-tune it as needed with
newer data from other timesteps.

In Figure 11, we compare the reconstruction quality across
48 time steps of Isabel for 3% sampling percentages. We
use linear approach as a baseline (shown in black), and
use two FCNN models that are trained on time steps 01



(a) Hurricane Isabel dataset
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Fig. 13. Applying fine-tuned model from lower resolution Isabel data to its
higher resolution data.

(FCNNPf01, shown in cyan) and 25 (FCNNPf25, shown
in green) and use them to predict on all 48 time steps. We see
that FCNNPf01 performs well in the beginning timesteps,
but continues to degrade in performance as the data changes
over time. Similarly, FCNNPf25 performs the best around
timestep 25 and degrades both going forward and backward.
When we perform 10 epochs of retraining using these two
models (red and blue) over the timesteps, we observe that these
models fine-tune very quickly to the new data, and perform
much better than linear. This shows the efficacy of the FCNN
models over traditional rule-based approaches such as linear
interpolation. The loss progressions during the full training
and fine-tuning epochs are shown in Figure 12.

D. Experiment 3: Reconstruction Volume Upscaling

Generation of higher resolution data from lower resolution
is called volume upscaling. This problem has been extensively
studied in the field of scientific visualization, as discussed in
Section II. For the third experiment, we wanted to test volume
upscaling: Could we train an FCNN on a lower resolution
dataset and apply it to reconstruct the samples taken from
a higher resolution data? For this we used the Hurricane
Isabel dataset. As mentioned in Section III-A, the dataset has
a resolution of 250 × 250 × 50. We intended to replicate
Experiment 1 with this dataset, but now reconstructing to
the resolution size: 500 × 500 × 100. Thus we can test
reconstruction quality by computing SNR against a resolution
that is 2× upscaled on each dimension (and hence a dataset
that is 8× larger). Further, we modified the spatial extent
of the higher resolution data such that the higher resolution
data spans across different domains as compared to the lower
resolution data (Figure 13a). This experiment intended to not
only test the upscaling capabilities, but also to test if different
physical domains can be learnt by the fine-tuned FCNN model.

The SNR results are presented in Figure 13b. Again, the
black curve represents the quality of the linear method. The
blue curve shows the FCNN that is fully trained on higher
resolution data. The red curve shows the results of the model
that was created from lower resolution data and then fine-tuned
for 10 epochs. This result further shows how the knowledge
from lower resolution can be “transferred” to higher resolution
and across different spatial domain.
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Fig. 14. This figure shows reconstruction quality for the Hurricane Isabel
dataset when varying training samples are used during full training. The effect
of using fewer samples during training is very small on the quality, but as per
Table II, the training can be reduced almost linearly.

V. DISCUSSION AND CONCLUSION

The current work shows that FCNNs are a viable solu-
tion for dataset reconstruction. While the results are very
promising, we consider that there are ample opportunities to
investigate how machine learning can be used and refined for
reconstruction of scientific simulation datasets. We discuss the
following points:

TABLE I
TRAINING TIME FOR 500 EPOCHS FOR THE DIFFERENT DATASETS AND

RESOLUTIONS.

Dataset Resolution Training Time (seconds)
Isabel 250x250x50 533
Isabel 500x500x100 3737

Combustion 240x360x60 829
Ionization Front 600x248x248 5522

TABLE II
EFFECT OF SAMPLING ON TRAINING TIME FOR 500 EPOCHS FOR ISABEL

DATASET.

Dataset % of Full Training Data Training Time (seconds)
Isabel 100 533
Isabel 50 275
Isabel 25 161

Training data point selection The time to train a neural
network is highly dependent both on the computer hardware
to be used and on the number of training samples that are
available. If all the training data were used (1%+5% samples),
then the training time is listed in Table I. We experimented
with reducing this training time further by random sampling
the training set used to build the FCNN. The timing results
are shown in Table II and the corresponding SNR results are
shown in Figure 14. The results indicate that the decrease
in quality (compared to use the full training dataset) was
negligible, and even when using 50% and 25% of the samples
for training. As a future work, we plan to formally investigate
the idea of intelligent training set creation to support better
and faster reconstruction.

Contributions, Limitations and Future Work. The exper-
iments illustrate key benefits of using FCNNs to reconstruct
scientific datasets: (1) reconstruction quality is generally bet-
ter, (2) once trained, a model reconstructs extremely fast and
in constant time, and (3) models can be saved and very quickly



fine-tuned to use for reconstruction at different timesteps,
sampling percentages, and even dataset resolutions spanning
different spatial domains. In addition to these experimental
findings, we contribute the process of designing and fine-
tuning a well thought-out FCNN architecture (see Section III).

Despite these advantages, we also see limitations and chal-
lenges with the current approach. (1) The first is training
time. As shown previously, full retraining can be a little time
consuming, but this gets amortised over the usages. Also, sub-
sampling the training data can improve the full training time
without lowering the prediction quality too much. (2) A second
drawback is dataset specificity, as the FCNN is trained on the
dataset it reconstructs. As a future work, we intend to explore
how machine learning models can be trained to generalizably
reconstruct varied simulation datasets. (3) A third challenge in
our approach (also shared by other reconstruction methods) is
uncertainty. One solution is investigating neural networks that
include measures of uncertainty during reconstruction (e.g.,
using deep ensembles, Bayesian neural networks etc.). We
additionally plan to explore this as a part of our future work.

VI. CONCLUSION

At current, the use of machine learning for reconstructing
point-based scientific datasets is underexplored. To our knowl-
edge, this is the first work to delve into this specific topic.
Despite some acknowledged limitations (e.g., model training
time), our results are especially encouraging in two ways:
(1) Even with “straightforward” FCNN architectures, we can
create an effective data-driven reconstruction approaches that
are in many ways better than the state-of-the-art methods.
(2) The current work establishes some key benefits of deep
learning approaches (e.g., we can train and reconstruct at
different scales), providing a foundation by which future work
will likely greatly improve upon these results by creating much
more sophisticated, flexible, and generalizable models. Finally,
this work is well-timed, particularly as the age of exascale
computing necessitates inventive ways to store, transfer, recon-
struct, and analyze the massive amounts of data that will be
generated by scientific simulations. As deep learning increas-
ingly becomes a part of HPC workflows, experiments such as
the ones presented here will be critical to understanding how
and when to apply such techniques.
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