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a b s t r a c t

We conduct an eye tracking study to investigate perception text-embellished narrative visualizations
under different task conditions. Study stimuli are data visualizations embellished with text-based
elements: annotations, captions, labels, and descriptive text. We consider three common viewing tasks
that occur when these types of graphics are viewed: (1) simple observation, (2) active search to answer
a query, and (3) information memorization for later recall. The overarching goal is to understand, at
a perceptual level, if and how task affects how these visualizations are interacted with. By analyzing
collected gaze data and conducting advanced semantic scanpath analysis, we find, at a high level,
diverse patterns of gaze behavior: simple observation and information memorization lead to similar
optical viewing strategies, while active search significantly diverges, both in regards to which areas
of the visualization are focused upon and how often embellishments are interacted with. We discuss
study outcomes in the context of embellishing visualizations with text for various usage scenarios.
© 2020 The Author(s). Published by Elsevier B.V. on behalf of ZhejiangUniversity and ZhejiangUniversity

Press Co. Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Narrative visualization is a form of data storytelling where
statistical graphics are used to complement (or even replace
parts of) a story (Segel and Heer, 2010). Narrative visualizations
can be categorized – based on their afforded interactivity – into
static and interactive charts. For static charts and infographics,
narrative rhetoric can be attained not only by framing the chart’s
design choices (Hullman and Diakopoulos, 2011), but also by
embellishing the base visualization with additional cues: glyphs,
pictures, labels, annotations, descriptive captions, highlights, etc.
Static narrative visualizations are commonly found in written
articles – e.g., in a newspaper – or as a part of media presentations
– e.g., on PowerPoint slides – to provide contextualizing insights
that support the author’s narrative. For interactive charts and
dashboards, the user manipulates the visualization(s) to explore
the underlying dataset, via the use of tooltips, filters, linked views,
animations, transitions, pop-ups, etc. In today’s digital world, nar-
rative visualizations have widespread adoption in computational
journalism and online media (Cohen et al., 2011).

In this paper, we study a specific subset of narrative visualiza-
tions: static charts embellished with text-based narrative cues. There
is good motivation for this. Narrative visualizations are commonly
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employed for public consumption, such as in newspapers, media
sites, government reports, and websites (Cohen et al., 2011),
and should be designed to ensure effective and desired compre-
hension. The information that such visualizations provide is in
part likely a combination of the visual features (or properties)
of the chart (Matzen et al., 2018), the task (or expectations) of
the user (Healey and Enns, 2012), and the type of information
provided by the visualization (see Shah and Hoeffner, 2002 for a
review).

To help better understand the visual importance of features
present in static narrative visualizations when a person is per-
forming various tasks, we conduct a controlled eye tracking user
study. Eye tracking is one way to understand visual saliency
of a scene, as gaze is typically thought to be closely linked to
attention (Rayner, 2009a). In particular, we collect and analyze
the eye movement data of participants (n = 16) to evaluate how
gaze behavior and visual scanning strategies differ based on the
participant’s current task. We formalize this exploration around
the following two-part research question:

Research Question: (1) When viewing static narrative visualiza-
tions embellished with text elements, are gaze behavior
and visual scanning strategies affected by the viewer’s
current task? (2) If so, how?

We consider three tasks in our study, each reflecting common
reasons that a person might look at a visualization:
ersity and Zhejiang University Press Co. Ltd. This is an open access article under
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bservation: The chart is viewed simply because it is present,
perhaps as part of a news story shown on TV, as a sup-
plementary figure in an article, or as part of a slide in a
presentation.

earch: The chart is explicitly looked at to learn specific infor-
mation, perhaps as a response to an information-seeking
query.

ecall: The chart is observed for a period of time. At a later point
in time, when the chart is no longer present, information
shown on the chart needs to be recalled from memory.

Our assumption about the first part of the research question is
trivial, ‘‘yes, task affects visual perception’’. In part, we base this
n prior research into how humans translate sight into memories.
uided search (Wolfe, 1994) is the process of spatially focusing at-
ention to perform complex cognitive operations – e.g. looking up
nd validating a target as part of a search task – using input from
arlier attentional processes. In simple observation scenarios that
ack any specified target, guided search will either not occur or it
ill be self-driven by the viewer. In contrast, recall tasks where
he stimulus is no longer available require longer information
torage using either short- or long-term memory (Atkinson and
hiffrin, 1968).
The second (and more interesting) part of our research ques-

ion looks at how task affects gaze and scanning behavior. For ex-
mple, we assume that when no specific target is provided (as in
he observation and recall tasks) there will be a disproportionate
ocus on the text elements in the stimuli.

To conduct our study, we use an eye tracker that records the
ye movements of participants while they look at displayed stim-
li while performing the three tasks. Since attention is generally
hought to be linked to gaze, eye tracking can provide a window
nto cognitive processes as a person takes in a scene (Holmqvist
t al., 2011). Prior work has shown that gaze can be affected both
y the stimuli (e.g. Netzel et al., 2017a; Goldberg and Helfman,
011) and the task that is being performed (Yarbus, 1967). To
ake the study grounded, we use real-world published visual-

zations as stimuli, which are carefully selected and balanced to
inimize the potential for confounding variables (Borkin et al.,
013, 2016).
We analyze the collected study data at various levels of se-

antic complexity. First, we assess traditional ‘‘point-based’’ eye
racking metrics: fixation durations and saccade distances. For
dvanced analysis, we conduct an extensive manual area of in-
erest (AOI) tagging that accounts for subject viewing semantics.
or 16 subjects, this results in 960 scanpaths composed of over
7,000 AOI tags. We analyze both AOI transitions and aggregate
canpaths to discern variations in viewing strategies between the
asks.

At a high level, the study results validate the first part of our
esearch question: yes, that task does impact gaze behavior of
ext-embellished narrative visualizations. For the second part, the
tudy results indicate task-based gaze differences exist both at
he perceptual level (point-based gaze metrics) and for higher-
evel viewing strategies (AOI- and scanpath-based data). Notably,
e see a large divergence in gaze strategies when comparing the
oncrete task (search) to the two open-ended tasks (observation
nd recall).
We conclude by discussing the contributions of this work:

1) a robust anonymized eye tracking dataset with both point-
ased and semantic/annotated gaze data (over 47,000 manually
agged AOIs),1 (2) an empirical validation that task affects gaze

1 Supplemental materials are hosted at https://github.com/chrisbryan/
tudyData_AnalyzingGazeBehaviorByTask.
42
behavior, which reinforces several findings from previous and
related studies, (3) new insights how the importance of text as a
‘‘focus first’’ feature on gaze behavior for narrative visualizations,
which can inform in creating task- and temporally-aware design
guidelines, quality metrics, and saliency maps.

2. Related work

2.1. Graphical perception and visual attention

Graphical perception considers how people perceive and inter-
pret the mark and channel encodings in charts, graphs, and other
visualization techniques (Cleveland and McGill, 1984). Healey
and Enns provide an excellent overview for how attention and
memory affect perception with regards to data visualization and
graphics (Healey and Enns, 2012). Visual attention is a complex
process that combines low-level sensory and perceptual pro-
cesses with cognitive considerations. These directly affect what
we actually ‘‘see’’ when looking at a scene, based not only on
where we look but also on what is in our minds. For example,
being able to interpret the salient features or regions within a
chart is important for overall comprehension (Hoffman and Singh,
1997).

It has long been known that perception can be affected by task.
Neisser’s classic study – where a woman holding an umbrella
walks through a basketball game – demonstrates that inatten-
tional blindness can occur due to concentration on a separate
target (Neisser, 1979). When observers were asked to count bas-
ketball passes, only a small minority even noticed the woman
in the scene. When the task was simple observation, 100% of
participants noticed the woman.

2.2. Narrative visualization

In addition to Segel and Heer’s formal categorization of narra-
tive visualizations (Segel and Heer, 2010), the importance of vi-
sualization to data storytelling had been recognized across many
application fields, including InfoVis (Gershon and Page, 2001),
SciVis (Ma et al., 2012), news and media (Cohen et al., 2011),
and business and industry (Knaflic, 2015). Moere and Leuven
argue that visualizations used for communication should have a
focus on aesthetics in addition to soundness and utility (Moere
and Purchase, 2011). In practice, this commonly means nicely
designed charts and graphics that are styled with rhetorical cues
and flourishes to promote a desired interpretation (Hullman and
Diakopoulos, 2011).

Graphical embellishments such as annotations and other de-
sign cues (sometimes derogatorily referenced as ‘‘chart junk’’) are
considered an effective way to ‘‘point’’ to regions or features of
interest on visualizations (Segel and Heer, 2010). In cognitive psy-
chology and educational domains, annotated figures have been
shown to improve active engagement, germane processing, and
creativity, while leading to superior learning outcomes (Sedig
and Parsons, 2013; Mayer et al., 1995, 2005). Recent research in
InfoVis has demonstrated several benefits of embellished static
visualizations, including enhanced recall, memorability, and com-
prehension (Bateman et al., 2010; Borgo et al., 2012; Borkin et al.,
2013, 2016). However, a careful design balance must be struck, as
too much ‘‘junk’’ hinders not only memorability but other tasks
like visual search (Borgo et al., 2012). That said, ‘‘a memorable
visualization is often an effective one’’ for later recognition (Borkin
et al., 2016) and appending interesting visual cues a common
approach for creating memorability (Borkin et al., 2013).

https://github.com/chrisbryan/StudyData_AnalyzingGazeBehaviorByTask
https://github.com/chrisbryan/StudyData_AnalyzingGazeBehaviorByTask
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.3. Eye tracking

To quantify foveal focus for a given scene, eye trackers record
ow a person’s eyes move and fixate on objects (Holmqvist et al.,
011). While eye tracking is not a perfect proxy for perception
nd attention, they are generally considered closely
inked (Rayner, 2009b). There are two primary types of point-
ased gaze data: Fixations are locations where the eye briefly
emains approximately still. Saccades are optical ‘‘jumps’’ be-
ween successive fixation points. The trajectory of alternating
ixations and saccades on a stimulus is called a scanpath. Mean-
ngful regions in a stimulus can be organized into areas of interest
AOIs). Visits to and transitions between AOIs provide insight into
igher-level viewing behavior. For example, a scanpath can be
nterpreted as a sequence of categorical AOI tags (each fixation
ertaining to one AOI), enabling analysis using event sequence
nd language processing techniques like n-gram analysis (we use
his technique in Section 6).

Using eye tracking, different types of visualizations have been
hown to elicit different gaze behavior. Goldberg and Helfman
ompared radial and linear versions of several chart types, show-
ng different fixation patterns for the same lookup task (Goldberg
nd Helfman, 2011). They found subjects performed a three-stage
ognitive process based on the order in which they looked at
hart elements. More broadly, it has been shown (going as far
ack as Yarbus’ work in the 1960s) that varying task can affect
ow people observe a stimulus (Yarbus, 1967).
Even for the same task, visual scanning strategies can vary.

tudying maps, Netzel et al. found that different map variants
romoted different viewing strategies for a search task (Netzel
t al., 2017a). In a separate study on metro charts, Netzel et al.
2017b) clustered scanning strategies for a path-following task—
inding different gaze behavior depending on how subjects solved
line-tracing problem.
Eye tracking also sheds light on how narrative visualizations

re perceived. Acartürk (2012) investigated fixation distributions
or a search task on annotated line charts, finding that fixations
n annotations come at the expense of focus on other parts
f the chart. In Bateman et al.’s ‘‘chart junk’’ study (Bateman
t al., 2010), the overall percentage of fixations for various chart
OIs were provided to demonstrate aggregate attention to vari-
us types of chart elements. Using the MASSVIS dataset, Borkin
t al. conducted several studies on the memorability and recall
f narrative visualizations (Borkin et al., 2013, 2016). (We use
heir dataset as a candidate pool for our study stimuli, see Sec-
ion 4.) Matzen et al. performed temporal analysis of fixation
ercentages on embellished visualizations (Matzen et al., 2017),
imilar to parts of our analysis in Section 6. However, their study
esign only looks at aggregate and temporal fixation distributions
similar to our hypotheses H4–H6), whereas we investigate gaze
ehavior over multiple semantic levels of complexity.

. Hypotheses

To investigate the research question posed in Section 1, we list
set of hypotheses. As previously described, we consider three

asks (observation, search, recall). In the full study design (see
ection 5), we test over four types of visualizations (bar chart, line
hart, map, point-based chart), meaning there are two indepen-
ent variables in the study. Specific data points collected (i.e., the
ependent variables) include task performance (the search and
ecall tasks ask subjects to answer a question for each trial),
oint-based gaze data, AOI visits, and scanpaths.
The four hypotheses consider each of these dependent vari-

bles individually and are written to determine if task has an
ffect on gaze behavior for that data point.
43
H1 Task performance will be better for the search task com-
pared to the recall task.

H2 Point-based gaze data will primarily vary based on the task.
H3 Chart features, specifically text-based narrative embellish-

ments, will be focused upon at different frequencies and at
different times for each task.

H4 Aggregate viewing behaviors will vary based on task.

By analyzing the data about each hypothesis in detail, we can
explore how gaze behavior changes based on the task. Below, we
briefly outline assumptions for how we believe task will affect
gaze behavior for each hypothesis.

3.1. Subject performance by task [H1]

As the focus of the study is gaze behavior, H1 is given primarily
as a sanity check to ensure that in tasks that difficulty is appropri-
ately reflected in the search and recall tasks. When the stimulus
is present (search task), the answer can simply be looked up, so
performance should be higher compared to the recall task which
uses memory to answer the question. If performance is similar
between these tasks, it could indicate a study confound due to
unbalanced questions.

3.2. Point-based gaze data [H2]

Average fixation durations and average saccade lengths are the
two most common metrics for point-based gaze data. Fixation
durations are sometimes considered as a proxy for cognitive pro-
cessing (Holmqvist et al., 2011). Higher values can indicate that
a subject is spending more time dwelling on a stimulus feature,
possibly due to visual complexity or scene novelty, while lower
values can result from stress and/or frenetic scanning behavior.
Longer saccade lengths can indicate exploratory or searching
behavior; shorter ones either a longer focus within small regions
or short jumps across the stimuli (Holmqvist et al., 2011).

Our assumption is study participants will peruse the charts at
different speeds (varying fixation durations) and with different
jump patterns (varying saccade lengths). Reading text generally
results in short saccades (Rayner, 1998), which we believe will
be a disproportionate focus during the observation task.

3.3. Focusing on chart features [H3]

To assess H3, we first consider that chart elements (labeled as
AOIs) can be categorized either as ‘‘base’’ chart features (required
elements of the visualization, such as axes and marks) or as
embellishments. (Table 1 shows the specific categorization of
chart elements.) Our assumption is that optical focus on these
items will vary based on task. For example, since observation is
an undirected task, participants will overly focus on the embel-
lishments (such as reading a chart’s caption, which is a cognitively
easier process than interpreting abstract marks and channels). For
the search task, subjects will likely skim over the embellishments
if they are irrelevant, leading to less focus on these features.

3.4. Aggregate viewing behaviors [H4]

The last hypothesis deals with overall viewing behavior when
looking at a chart. By analyzing aggregate scanpaths of partic-
ipants when viewing a stimulus, we can investigate how gaze
behavior for the overall scene varies.
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Table 1
Classified chart elements (AOIs) and action tags. Every fixation during the study is classified into an AOI under one of the four AOI
groups: general scanpath AOIs, SCEs, NTEs, NPEs, or a Q&A elements. Some AOIs can also have action tags prepends to them, see
Section 5.5. Note that Z and E AOIs are omitted from analysis of H4–H6 in Section 6.3.
AOI Description

General scanpath AOIs
Z Start — The starting fixation on the scanpath trajectory.
E End — The ending fixation on the scanpath trajectory.
N Nothing — An area of the page that could not be associated with any AOIs.

Standard Chart Elements (SCEs)
D Data Mark — A point, line, or area mark.
B Background — The chart’s background area.
K Key — The key or legend.
X X-Axis — The x-axis.
XL X-Axis Label — The text label denote the x-axis’ values.
Y Y-Axis — The y-axis.
YL Y-Axis Label — The text label denoting the y-axis’ values.

Narrative Text Elements (NTEs)
T Title — The chart’s title.
C Caption — The text caption or subtitle.
S Source — A text label denoting the data source or publishing information.
DL Data Label — A text label referencing a data mark’s value or timestep.
A Annotation — An overlaid text annotation, text box, or descriptive sentence that contextualizes the chart.

Narrative Pictorial Elements (NPEs)
H Highlight — A shape or glyph that points to or highlights a set of data points or an area on the chart.
P Pictures — A non-text embellishment (picture, drawing, etc.); can also act as a background element.

Q&A elements (Search Task Only)
Q Question — The question text that is asked to the subject.
QA Answers — The answers to the question (a set of input boxes).

Action tags
J Jump — Directing foveal attention to a new area, starting a new, unconnected sequence of fixations.
R Reference — Directing attention to a chart element explicitly based on the prior chart element.
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4. Stimuli overview

Before running the study, we must first select an appropriate
et of visualizations to use as stimuli. For this, we turn to the
ASSVIS Dataset.2 A total of 66 visualizations were selected from

his dataset: 20 charts for each task plus 6 charts for training.
Selected charts are only used for one task, and no two charts

re exactly the same. This can lead to potential study confounds
s no two charts are exactly the same: there might be slight
ariations in styling, data density, and composition, text content,
tc. To account for this, we carefully select stimuli in triplets:
hree similar visualizations were chosen together – based on
everal design and stylistic constraints – and one each assigned
o the observation, search, and recall tasks.

.1. Selecting stimuli from the MASSVIS dataset

The MASSVIS Dataset is a large collection of static visualiza-
ions scraped from several public online sources: government
eports, infographic blogs, design sites, news and media websites,
nd scientific journals (Borkin et al., 2013, 2016). It was originally
ublished as a resource for researchers to gain deeper insight into
ow the elements of visualization affect memorability, recall, and
omprehension. With over 5000 total image files, it represents an
xtensive cross-sampling of current ‘‘in the wild’’ design trends
nd patterns. A broad range of visualization types, styles, and
omplexities is represented.

.1.1. General stimuli constraints
We use the ‘‘targets393’’ subset of the MASSVIS Dataset as

candidate pool for stimuli. This subset contains 393 visualiza-
ions that meet specific design constraints: they are single-panel,
tand-alone charts that have been rigorously labeled according
o a number of encoding and metadata properties.3 Significantly,

2 http://massvis.mit.edu/.
3 Metadata and labeling information for the targets393 subset can be found
t the following URL: https://github.com/massvis/dataset.
 u

44
the targets393 subset has been used in prior eye tracking studies
and verified to contain appropriate aspect ratios conducive to eye
tracking (Borkin et al., 2016).

In selecting candidate charts from the targets393 subset, the
following constraints were initially applied:

Visualization Type. A dozen visualization types are contained
in the targets393 subset. Of these, we restrict potential stimuli to
four of the most common types: bar chart, line chart, map, and
point-based charts. These charts make up approximately 60% of
the targets393 subset (233/393 total charts). Each of our three
study tasks has five visualizations of each type (for 20 total charts
per task).

Text-based narrative elements. Only visualizations contain-
ing text-based embellishments were considered as potential
stimuli (see NTEs in Table 1). Generally, these types of embellish-
ments are manually appended by the chart designer to provide
interpretation and framing (Hullman and Diakopoulos, 2011).

Legibility. We discarded potential stimuli that the targets393
etadata notes that some stimuli were labeled as hard-to-read

n prior studies, primarily because the image files were pixelated
nd contained blurry text or data marks.

.1.2. Selecting triplets of stimuli for each task
In addition to the above constraints, when selecting stimuli

riplets we also evaluated similarity by balancing the following
actors:

Visual Density. This is the density of the visualized data marks
ith respect to the overall image. We did not want stimuli to be
oo dense as this normally corresponded to very complex charts.

Data-Ink Ratio. The amount of data to non-data elements in
he chart. Like visual density, we balanced between overly dense
harts and those containing only a few sparse elements.
Distinct Colors. Black-and-white visualizations were

iscarded. For color visualizations, the number of distinct colors
as usually between 2–6.
Number of text-based embellishments. The count and make-
p of text-based embellishments for each triplet was balanced.

http://massvis.mit.edu/
https://github.com/massvis/dataset
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verall, charts had an average of 15.35 narrative elements,
hough it is important to note that variance was sometimes
igh between different triplet sets. For example, while all charts
ad at most one title element, maps usually contained several
abels identifying individual countries, states, cities, geographic
eatures, etc. Bar charts regularly label each bar mark (sometimes
ith the numerical values redundantly encoded). Such variance
ighlights the importance of selecting stimuli as triplets, as it
venly distributes individual variances across charts among each
ask.

Total Word Count. We summed all words in the visualization,
ncluding from base chart elements (keys and axes, see SCEs in
able 1). Overall, charts had an average of 85.85 words. Again,
hough variance between individual charts was sometimes high,
hart triplets were balanced to have a similar number of words.
Visual Complexity. Visual complexity is loosely defined as

the amount of detail in the chart (Borgo et al., 2012). This is
partly a function of aforementioned factors (density, data-ink ra-
tio, word count), but also depends on the chart’s perceived degree
of structure, data variety, and organization. Visual search can be
highly dependent on the visual complexity of a chart (Reppa et al.,
2008). To mitigate this, charts with similar visual complexity
were selected as triplets.

Pictorial Embellishments. Narrative visualizations can also
contain non-text embellishments (see NPEs in Table 1). These
include arrows, circles, lines, and other glyph shapes, which are
used to highlight data—for example, connecting a text label to a
data point. Embellishments can also include human-recognizable
objects, such as drawings or pictures overlaid on the chart or set
as a background.

Rendering Style. Since the MASSVIS Dataset aggregates from
several sources, there is a wide range of design stylings and aspect
ratios in its charts. For example, government charts tend to be
more minimalist and traditional in design, with clean borders and
serif-text font. Infographic charts from blogs generally have artis-
tic flourishes, such as utilizing multiple font styles and adding
pictorial embellishments.

An example stimuli triplet is shown in Fig. 1. It is important to
note that these factors are not considered control variables, since
it is extremely difficult (if not impossible) to rigorously mitigate
so many variables in a single study. Despite this, each factor was
reviewed and balanced when selecting and dividing charts among
the three tasks.

The supplemental materials contain a list of statistics for
countable variable; these were used as quantitative reference
points when balancing charts. By maximizing the similarities be-
tween stimuli triplets, we minimize potential confounding effects
due to variation in chart presentation. Such a balancing approach
is similar to prior studies (Borgo et al., 2012; Matzen et al., 2017)
which also use real-world, narrative-based datasets for stimuli
and must comprehensively balance several subtle-but-important
factors.

4.2. Recall and search questions

To make the search and recall tasks tractable, we needed a
mechanism that motivated subjects to earnestly perform each
task. To do this, we formatted the search and recall tasks as
‘‘answer the question’’ exercises. Subjects were given a multiple
choice question about data shown on a chart with four possi-
ble answers. Each stimulus was assigned one question, meaning
40 total questions were generated. Questions for each stimulus
ask the subject to either (1) identify a displayed data value or
extremum (2) understand a trend, pattern, or theme shown in
the chart, both of which are common visualization tasks. The
supplemental materials show an example of how questions in the
45
search and recall tasks were rendered to participants during the
study.

For each set of stimuli in the search and recall tasks, 10 vi-
sualizations were randomly assigned ‘‘data value’’ questions and
10 were assigned ‘‘trend’’ questions. Questions were written such
that they could be answered by looking at the data visualization
only. That is, we did not ask questions that required reading any
embellishments, though in a small number of instances – 2 times
in search, 7 times in recall – a text embellishment redundantly
answered or provided a hint to the answer, though this did not
affect the gaze behavior of participants in the study.

Questions for each chart also varied in relative difficulty, so as
not to promote uniform review and search strategies. Questions
were worded so that, as best possible, a subject could not use his
or her prior knowledge to select the answer. Fortunately, many of
the charts selected as stimuli visualized niche data (as shown in
Fig. 1), making it highly unlikely that participants could use prior
knowledge. In the study interface, questions were displayed using
four clickable answer buttons.

5. User study

As mentioned previously, the study has two independent vari-
ables: task and visualization type. The design is within-subject;
an outline is shown in Fig. 2. Task order is randomized and the
same stimuli are used for each task, but trial order within each
task is randomized (mitigating potential learning effects). With 16
users and 20 stimuli for each of the three tasks, the study contains
16 × 20 × 3 = 960 total trials.

5.1. Protocol

A participant begins the study by entering demographic infor-
mation. Submitting these advances to an intro page which gives
instructions for the first task. For example, the observational task
reads as follows: Each visualization will be shown for 10 s. Your
task is simply to look at the visualization. Nothing else is required!
Progressing to the next page begins a set of 22 repetitions, as
outlined in Fig. 2. Specific procedures for each task are as follows:

Observation. The stimulus is displayed for 10 s and then a
break screen is shown. Pressing the space bar proceeds to the next
stimulus.

Recall. The stimulus is shown for 10 s, then a gray screen is
hown for 5 s, and then a multiple choice question about the just-
een stimulus is shown with four answers. Selecting an answer
roceeds to a break screen, whereupon pressing the space bar
roceeds to the next stimulus.
Search. The question and answers are shown for 10 s with
blank space present where the stimulus would normally be.
fter 10 s, the stimulus appears in the blank space. At this point,
electing an answer proceeds to a break screen, where pressing
he spacebar to the next stimulus.

The first two repetitions for each task are considered training
nd not included as results. During training, the subject is allowed
o question the session proctor if they are confused. The break
creen allows subjects to rest, relax, and adjust position between
rials. A subject can remain on this screen for as long as desired.
hen the 20 trials for a task are completed, the study redirects to

n intro page for the next task. Upon completing the three tasks, a
inish page states the study is finished and reports the number of
uestions the subject has correctly answered during search and
ecall tasks.
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Fig. 1. An example chart triplet used in the study. Three charts are selected based on similarity according to several factors described in Section 4.1.2, including
design styling, aspect ratio, text embellishments, and amount of information content.
Fig. 2. The study design. After performing an eye tracker calibration, each subject begins by filling out demographic information and then completes the three task
stages in random order. For each task, 22 total repetitions are performed: 2 training, then 20 trials. Stimuli order within each task stage is randomized.
5.2. Pilot study

Before beginning the main study, we ran a short pilot study
ith three participants. Each completed the primary study as
esigned, but was instructed to verbalize any issues or confusion
hat occurred during the process. This allowed us to verify several
spects of the design: tasks were clearly explained, task stages
lowed as intended, the study duration did not cause undue
atigue by being overly long or tedious, stimuli were appropriate,
tc. Based on feedback, the study’s overall length and design were
aintained. No stimuli were deemed inappropriate and replaced,
ut the phrasing of three questions was changed to be more
xplicit.

.3. Testing setup and hardware

The study was conducted in a campus research laboratory, a
uiet, office-like setting with normal artificial lighting conditions.
ubjects sat at a desk in front of a 19-inch Dell monitor with
screen resolution of 1980 × 1080 pixels, running Microsoft

nternet Explorer 11 in full-screen mode. Stimuli larger than
100 × 900 pixels were downsized to fit these constraints (while

maintaining aspect ratio).
A Tobii X2-60 eye tracker was mounted at the base of the

onitor. Subject eye height was approximately one-third from
he top of the monitor (though this depended on subject height)
t a distance of approximately 60–65 cm from the eye tracker
the recommended sweet spot according to Tobii). The X2-60
ye tracker records gaze positions for each eye with a sampling
ate of 60 Hz. Tobii Pro Studio software processed the recorded
ye tracking data. Before beginning the study, each participant
erformed a 9-point eye calibration. To convert raw gaze data
nto fixations and saccades, the I-VT filter in Tobii Studio was
sed.
46
5.4. Participants

The 16 study participants were recruited from the University
of California, Davis (13 males, 3 females, age M = 26.5, SD =

5.3). 13 participants had a background in computer science, and
one each a background in economics, design, and biochemistry.
Based on a 5-point Likert scale, subjects reported moderate prior
familiarity with data storytelling (M = 2.4, SD = 0.9) and
high proficiency in reading English text (M = 4.6, SD = 0.8).
Participants took an average of 29.7 min (SD = 4.4) to complete
the study, timed from loading the demographics page to reaching
the finish page.

All subjects self-reported good vision with no forms of color-
blindness. Five wore eye glasses, two wore contacts, one previ-
ously had corrective eye surgery, and eight required no vision
correction. Eye tracker accuracy can vary from subject to subject,
being negatively affected by the presence of glasses, the shape
of a subject’s face, distance and angle to the eye tracker, etc.
Therefore, gaze sample quality was recorded during the study and
reviewed afterward to assess its validity. All subjects recorded
above a collection threshold of 75% of gaze samples (45+ samples
per second). Therefore, no subjects needed to be discarded.

5.5. Creating AOIs and scanpaths

To evaluate H3 and H4, individual fixations must be labeled
into AOIs according to the chart elements that subjects were look-
ing at during each fixation. It is important to note that eye track-
ing has inherent limitations: accuracy and precision are never
100% and peripheral vision is not considered. While it is highly
likely that foveal vision is the primary information-gathering
region of vision (reading relies on the ability to fixate on words
directly with the fovea Drieghe, 2011), peripheral vision plays an
important role in helping us determine where to look next.

Despite this, turning fixations into AOIs and chaining them
together into scanpaths is a popular and effective technique for
understanding high-level gaze behavior for a scene. We create
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scanpath for each study trail, using an extensive manual AOI-
agging method based on a 2016 study by Netzel et al. (2016).
n contrast to polygon-based approaches that automatically as-
ign fixations to AOIs based on shapes drawn on the stimulus
the approach used in Tobii Studio), manual AOI-tagging over-
omes the following challenges: (1) Text elements on a chart are
ormally quite small and may be placed on top of other AOIs
e.g. city/state labels on a map), leading to ambiguity. (2) The
ub-scanpath around the current fixation can provide additional
emantic information about the subject’s gaze. For example, if
subject looks at a data mark and then looks at the text label
nnotating that mark, it is reasonable to infer the text AOI is being
iewed in reference to the data mark. (3) Since fixation accuracy
nd precision may be slightly off, automatic labeling can result
n mislabeling. If a fixation is recorded as just outside an AOI’s
order, it will be incorrectly classified in an automatic scheme.
The manual annotation of AOIs resulted in the labeling of

7,778 fixations from the 960 study trials. Table 1 lists all AOIs
o which a fixation can be assigned, as well as their aggregate
‘AOI groups’’ (NTE, SCE, NPE, Q&A). Like Netzel et al. (2016),
e use the previous and subsequent fixations in the scanpath
o label each fixation according to (1) the chart element being
iewed, and (2) if the user is reasonably performing one of two
ransitional actions: a jump (J) or reference (R). These two action
tags denote specific eye actions that can happen when looking at
a stimulus. When a transitional action occurs, a fixation receives
two tags, one denoting the action and one denoting the AOI; e.g.
‘‘J DL’’ indicates a user is jumping to a data label. As Netzel et al.
(2017a) note, since this approach indirectly considers nearby
saccadic information, it ‘‘mimics to a certain degree the peripheral
information that led to an action’’.

We include this fixation-to-AOI labeling dataset in supplemen-
tal materials.

6. Results

We organize the results according to hypotheses H1–H4.
Where appropriate, we use a threshold of α = 0.05 to as-
sess significance difference between conditions. In these cases,
a Shapiro–Wilk test was first applied to verify that data values
were normally distributed.

6.1. Analyzing subject performance by task [H1]

For the search and recall tasks, participant performance was
measured as the number of correctly answered questions. Within
each task, a paired sample t-test indicates question type (data
value vs. trend) does not have an effect on performance (p >

0.05). As expected, between tasks performance was higher in the
search task (M = 16.25/20, SD = 1.53) compared to the recall
task (M = 8.5/20, SD = 1.86). A paired sample t-test indicates
that task has a significant effect on subject performance: t(15) =

16.812, p < 0.01. Therefore, H1 is supported.

6.2. Analyzing point-based gaze data [H2]

To analyze point-based gaze data, we consider fixation dura-
tions and saccade lengths. Fig. 3 plots these values by task and
visualization type. We conduct to analyses on this point-based
gaze data:

(1) As an initial assessment, we perform a pair of two-way
repeated measures ANOVAs using average saccade length and
average fixation duration as the dependent variables and task
as the independent variable. The first ANOVA indicates that task
does not have a statistically significant effect on average fixation
duration: (F = 1.034, p = 0.368, η2

= 0.064). The second
2,30

47
Fig. 3. Average fixation durations and averaged saccade lengths plotted by chart
type and task. Error bars display 95% confidence intervals.

ANOVA indicates that task has a significant effect on average
saccade length: (F2,30 = 63.94, p < 0.01, η2

= 0.81). Bonferroni
post hoc tests reveal a statistically significant difference between
saccade lengths among all three tasks (p < 0.5).

(2) Next, we analyze the relationship between task and chart
type to see if chart type has a large effect on point-based gaze
data, regardless of task. We perform a pair of two-way repeated
measures ANOVAs using average fixation duration and average
saccade length as the dependent variables and task and visual-
ization type as the independent variables. Each ANOVA indicates
there is a significant task × visualization type interaction, both
for fixation durations (F6,90 = 2.862, p < 0.05, η2

= 0.16) and
saccade lengths (F6,90 = 7.562, p < 0.01, η2

= 0.3). However,
the effect sizes for fixation durations (η2

= 0.16) are very small,
indicating that, though an effect exists, it is unsubstantial and can
therefore be ignored (Cohen, 1992). For saccade lengths, the effect
size (η2

= 0.3) is considered medium (Cohen, 1992). For post
hoc analysis, we run a within-subjects contrasts test on saccade
lengths. Contrasts on this interaction term indicate that when the
difference in saccade lengths between the observation and recall
tasks was compared to maps and points chart types, there was
a significant difference (p < 0.05). However, no other interaction
effects were observed. This can be verified by examining Fig. 3,
which shows there is no clear pattern or ordering of saccade
length values within each task. (For example, bar chart has the
highest saccade length in the search task, line chart is the highest
for recall).

In sum, the latter analysis (2) on task × visualization type
indicates the interaction for fixation durations is insignificant, and
for saccade lengths does not show a clear ordering, suggesting
that visualization type is not a driving factor in differences for
point-based gaze data. Paired with the initial ‘‘task-only’’ analysis,
which shows average fixation durations are not affected by task,
but average saccade lengths are, H2 is partially supported.

6.3. Analyzing focusing on chart features [H3]

To understand the chart features that participants focus on,
we analyze labeled AOIs (created via the manual process in Sec-
tion 5.5). Specifically, Fig. 3 lists three AOI groups: NTE, SCE, and
Q&QA (search task only). We first compare the overall normalized
distribution of AOI group visits against each other for each task
using paired sample t-tests. For observation, AOIs in the NTE
group were viewed at a higher rate (M = 0.45, SD = 0.02)
than SCE AOIs (0.21, SD = 0.08): t(15) = 8.7, p < 0.01. For
search, AOIs in the SCE group were viewed at a higher rate (M =
0.27, SD = 0.03) than both NTE (M = 0.21, SD = 0.03) and Q&QA



C. Bryan, A. Mishra, H. Shidara et al. Visual Informatics 4 (2020) 41–50

a
w

f

b
o
1
o
t
i
a
t
B
h
s

p
(
v
t
N

6

v
f

Fig. 4. For each task, the percentages of fixations for each AOI group and the percentage of fixations that contain an action tag for the first 50 fixations of the
scanpath. In (a), the caption AOI is additionally rendered to demonstrate that this tag makes up the majority of NTE fixations during the observation task.
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AOIs (M = 0.18, SD = 0.03): respectively, t(15) = 4.5, p < 0.01
nd t(15) = 6.625, p < 0.01. For recall, AOIs in the NTE group
ere viewed at a higher rate (M = 0.38, SD = 0.05) than SCE

AOIs (M = 0.24, SD = 0.008): t(15) = 7.38, p < 0.01). In other
words, each task shows significant differences in the frequencies
at which chart features are focused upon.

To better understand the dynamical nature of how partici-
pants focused on charts, we next analyze how participants fixated
upon (i.e., looked at) AOIs over time. Fig. 4 plots the fixation
percentages for AOI groups over time. Interestingly, temporal AOI
fixations show a similar trend to the point-based gaze data shown
in Fig. 3, in that the observation and recall tasks are similar as
compared to the recall task.

To get a quantifiable sense of how AOI distributions change
over time, for each task we bin fixations in groups of 5 along the
scanpath (i.e. fixations 0–5, 6–10, 11–15, etc.). Within each bin,
we aggregate fixations into AOI groups and run paired sample t-
tests between AOI groups (ignoring the NPE group, since it has
minimal focus). For observation, the tests indicate that until the
‘‘25-30’’ fixation bin, the NTE group has a significantly higher
distribution (p < 0.05, p > 0.05 for subsequent bins). For search,
while some bins show NTE has a higher distribution than SCE,
this is not always the case (for example, our results show that
SCE > NTE in bins 5–10, 20–25, 30–35, and 40–45), indicating no
consistent pattern between focus on NTE and SCE AOIs. For recall,
the t-tests indicate that until the ‘‘20-25’’ fixation bin, the NTE
group has a significantly higher distribution (p < 0.05, p > 0.05
or subsequent bins).

As the observation and recall tasks displayed strikingly similar
ehavior up to the ‘‘20–25’’ bin, we compared these two tasks
ver this portion of the scanpath. For each fixation bin 0–5, 6–
0, 11–15, 16–20, and 20–25, we perform a repeated measures
ne way ANOVA, where task is the independent variable and
he normalized number of NTE tags of each subject in each task
s the dependent variable. The ANOVAs indicate that task has
statistically significant effect on the NTE distribution across

asks for each bin (p < 0.05) up until the 20–25 bin. Post hoc
onferroni tests indicate that the NTEs in observation have a
igher distribution of AOI visits during this span compared to the
earch and recall tasks.
To sum, the observation and recall tasks display a similar

attern for how subjects focused on chart features: NTE AOIs
i.e., text-based embellishments) dominate the early part of the
iewing experience, though this is more pronounced in observa-
ion. In contrast, the search task had no clear pattern for viewing
TE and SCE AOIs. Therefore, H3 is supported.

.4. Aggregate viewing behaviors [H4]

Finally, we analyze whether aggregate viewing behavior will
ary based on task. We do this by considering the entire scanpath
or each trial in our study.
 r

48
Fig. 5. Scanpaths for the 960 study trials are colored by task and visualized
using multidimensional scaling based on similarity. Search scanpaths cluster at
lower right, while observation and recall scanpaths are more widely distributed.

To begin, we first plot the 960 trials by their scanpath pair-
wise distances. We calculate the distances between each pair of
scanpaths using the Needleman–Wunsch algorithm (Needleman
and Wunsch, 1970). This algorithm originated in bioinformat-
ics as a way to assign cost in aligning protein sequences, but
works for any categorical sequence (i.e. string) dataset. (Note
that, to allow fair comparison, we removed the Q and QA AOIs
for scanpaths from the search task.) The algorithm calculates the
distance between two sequences by penalizing the cost to match
items at each position along the sequences. We use the following
penalty values when calculating the matching cost: {match: 0,
insertion/delete: 2, substitution: 2}.

Using the calculated distance matrix, the 960 scanpaths are
plotted in Fig. 5 using multidimensional scaling (Borg and Groe-
nen, 2003). Each scanpath is rendered as a single circle and
colored by task. Search scanpaths (blue circles) cluster towards
the lower right of the plot, while observation and recall show a
wider distribution over the rest of the figure.

To analyze how close the clusters from each other, we de-
termine both the between- and within-cluster distances. The
between-cluster distances between the observation and recall
cluster centroids are quite low: d = 0.182, while the distance
o the search cluster’s centroid is 0.65 and 0.53, respectively.
n other words, the search cluster is much farther from the
bservation and recall clusters than they are from each other.
The within-cluster distances for observation, recall, and search

re 0.41, 0.375 and 0.285, respectively. This indicates that scan-
aths for the observation task have the most divergence, while
canpaths for the search task are most similar to one another
i.e. the search cluster is the most homogeneous). This reflects
hat is shown in Fig. 5; the observation and recall tasks show

elatively similar behavior (i.e. similar distributions), but search
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s substantively different. This behavior is also similar to the
nalysis of the point-based gaze data and AOI visits: observation
nd recall are similar, while search is the outlier. Therefore, H4 is
upported.

. Discussion

Based on the study results – H1, H3, and H4 supported, H2
artially supported – the answer the first part of the overarching
esearch question posed in Section 1 is a straightforward, yes,
ask significantly affects gaze behavior for text-embellished narrative
isualizations. This result is not surprising, as it replicates aspects
f previous studies (both for visualization and not) that demon-
trate divergent gaze behavior under different task scenarios (see
ection 2.3). The second part of the question – how does task
ffect the gaze behavior between the observation, search, and
ecall tasks? – is more interesting. We discuss takeaways here.

.1. The search task is the outlier at all levels of gaze behavior

One particularly interesting result from our study is that ob-
ervation and recall displayed strikingly similar gaze behavior at
ll three levels of analysis: point-based gaze data (fixations and
accades), focusing on chart features (AOI analysis), and for aggre-
ate viewing behavior (scanpath-based analysis). In contrast, the
earch task led subjects to demonstrate significantly divergent
aze behavior. This is likely because only the search task employs
uided search (Wolfe, 1994). Subjects are given a definite target
y which to complete the task. Since observation and recall are
‘open-ended’’, with no specified target given while the stimulus
s present, these two tasks promote a similar ‘‘breadth-first’’ gaze
ehavior that encourages subjects to peruse the entire scene.
Paradoxically, prior research has demonstrated that scanpaths

oth can differ even for the same task on a visualization stim-
lus (Netzel et al., 2017b), and also be used to infer low-level
erception tasks (Steichen et al., 2013). (Note that this latter
aper only considers guided search tasks such as looking up and
omparing variables.) Scanpath variation has also been shown to
ot negatively affect scene memory (Rayner, 1998). Despite this,
ur results show a high-level distinction, where observation and
ecall gaze behavior can roughly be placed in one bin, and search
laced in the other.

.2. Understanding focus on text embellishments

Even though gaze behavior differed between tasks, partici-
ants devoted a large amount of gaze towards narrative text
lements regardless of the task. For example, Fig. 4(b) shows that,
ven for the search task, NTEs were looked at almost as much
s SCEs during the first 50 fixations of the scanpath. This helps
emonstrate that, even with a guided task, text embellishments
till draw a large amount of the viewer’s focus, even though they
re not required. This aligns with prior work (e.g., Borkin et al.,
016; Ottley et al., 2019) which shows that text is an essential
eature of the communicative aspects of visualization.

For the other two tasks, NTEs dominated the early fixation
Fig. 4a,c). Looking more closely at the data for the observation
ask in Fig. 4a, we even see that the primary NTE that was visited
as the Caption AOI. This is likely a validation of Hegarty’s theo-
etical modeling of how mental models are constructed (Hegarty

nd Just, 1993).

49
7.3. Future directions

Though this study focuses on task as the primary driver for
gaze behavior, when evaluating H2 we saw interaction effects
between task and visualization type for average saccade length
and fixation duration (though for fixation durations, the effect
size was very small). We want to be careful about broadly extrap-
olating these results since each task only contained five examples
of each visualization type, but future studies can more deeply
investigate the specific influences that chart type and NTE styling
can have on gaze behavior when performing specific tasks. In
addition, future studies can explore factors such as assessing how
NTEs affect gaze behavior (and information retrieval) when they
directly provide hints or solutions to the task (such as providing
the answer to a question). We contribute study materials includ-
ing our detailed AOI labeling dataset as supplemental materials
to help with such studies.

The same premise also applies to the text content contained
in the visualizations. As described in Section 4, when selecting
MASSVIS charts as stimuli triplets, we carefully several balanced
chart design features such chart styling and text content (though
the amount of text itself was not controlled as an independent
variable). As a sanity check, we tested whether the amount of text
on a chart affected point-based gaze data. For each task, we found
the correlation coefficient between the total number of words in
a chart and the average saccade lengths and fixation durations.

cor(x, y) =

∑
(x − x̄)(y − ȳ)√∑

(x − x̄)2
∑

(y − ȳ)2

Correlation coefficients can range between −1 and 1, to indi-
ate negative and positive correlations. For the study, coefficient
alues were near 0 for all tasks, indicating little to no correlation
etween text amount and point-based data for our stimuli. In
ther words, the amount of text content was not the primary
river for saccade length and fixation duration values, but was
nstead the subject’s current task.

However, we note here that rigorously considering text
eatures – not just the amount of text, but other stylistic options
uch as font size, weight, and color – as factors in future studies
ill provide better insight into the relationships that chart type
nd text have with task performance, gaze behavior, and atten-
ion. As an example, recent work has shown that naively pairing
isualization and text does not necessarily lead to improved
easoning (e.g., Ottley et al., 2019).

This demonstrates the need for more research into under-
tanding how narrative visualizations that use text embellish-
ents can impact the viewer’s ability to extract information in

he context of different task scenarios. For example, in observa-
ional and memory (recall) text content is likely to be referenced
arly and therefore drive initial information extraction. Similar
o other empirical study papers about task-based visualization
erception, this work can help inform the design of advanced
ask- and/or temporally-aware visualization design guidelines,
uality metrics, and saliency models. In general, such work does
ot consider these sorts of semantics (e.g Shen and Zhao, 2014;
ylinskii et al., 2017; Matzen et al., 2018 only consider aggregate
ixations). Even when task is taken into account, such as the
ecent work by Polatsek et al. (2018), temporally-aware metrics
emain an underexplored research area.

. Conclusion

We present an eye tracking study to investigate the effects
f task on gaze behavior for text-embellished narrative visual-
zations. By analyzing a carefully curated set of real-world nar-
ative visualizations, we find similar viewing strategies during
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bservation and recall tasks, where subjects primarily focused on
arrative text elements early in viewing stages. In contrast, for a
earch task that required a subject to find an answer on the chart,
ery different behavior was observed for a number of eye tracking
ata points, including point-based metrics, AOIs, and scanpaths.
We hypothesize this is due to the search task motivating

uided search for a specific target. Despite this, text elements
ere still viewed at a high rate for all three tasks, which is
erhaps explained by Hegarty’s theoretical modeling of how cog-
itive models are constructed. These results how text-based chart
lements attract viewer gaze – even for tasks where they are
ot necessary – at all levels of perception (point-based, feature,
evel, and aggregate viewing behavior). We discuss potential fu-
ure work to investigate possible interactions between task, chart
ype, and text content, and discuss how our results can be applied
o task-based design guidelines and task- and temporally-aware
isual saliency maps.
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