
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 25, NO. 1, JANUARY 2019 193

GraphProtector: A Visual Interface for Employing and Assessing
Multiple Privacy Preserving Graph Algorithms

Xumeng Wang, Wei Chen, Jia-Kai Chou, Chris Bryan, Huihua Guan, Wenlong Chen, Rusheng Pan and Kwan-Liu Ma

49

280

1

Degree
Closeness
Betweenness

Degree
Closeness
Betweenness

Other nodes

0.3~0.8
0~0.5
0~0.5

0.8~1
0.99~1
0.99~1

P
ro

c
e
s
s
in

g
 p

rio
rity

H
ig

h
L
o
w

3
Degree
Closeness
Betweenness

0.99~1
0~1
0~1

PRIORITY

UTILITY

Metrics
Joint degree

Clustering coefficient

GRAPH PROTECTOR
Degree Protector K: 2

Hub Fingerprint Protector K: 5

PROVENANCE

2

1

Subgraph Protector K: 2

ID DEG CLO BET Selected

56 77 0.369 0.020

67 75 0.372 0.018

271 72 0.368 0.015

322 71 0.376 0.043

25 71 0.381 0.085

21 67 0.365 0.033

277 64 0.413 0.266

26 67 0.365 0.010

252 64 0.361 0.011

Remove empty nodes

STEP 1: Degree

STEP 2: Hub fingerprint

Subgraph

CURRENT RESULT

Degree Hub fingerprint

1 6 11 16 21 26 33 39 45 55 64 75

Node Amount

Degree

10

8

6

4

2

0

Classic External 2 detected subgraphs

Number of nodes: 6

Complete graph

Clustering coefficient

Joint degree

Added edges

(Euclidean)

0.509 0.2%

58.975

10 0.4%

Clustering coefficient

Joint degree

Added edges

(Euclidean)

0.510 0.0%

26.796

1 0.0%

Clustering coefficient

Joint degree

Added edges

(Euclidean)

0.510 0.3%

63.937

11 0.4%

D1

D2

(a) (b) (c)

(d)

Fig. 1. The visual privacy preservation stage of GraphProtector. (a) The graph protector view integrates multiple privacy-preserving
schemes. (b) The provenance view illustrates the effect caused by each process. (c) The utility view lists user-selected utility metrics.
(d) The priority view depicts the processing priority for nodes/identities specified by users.

Abstract— Analyzing social networks reveals the relationships between individuals and groups in the data. However, such analysis
can also lead to privacy exposure (whether intentionally or inadvertently): leaking the real-world identity of ostensibly anonymous
individuals. Most sanitization strategies modify the graph’s structure based on hypothesized tactics that an adversary would employ.
While combining multiple anonymization schemes provides a more comprehensive privacy protection, deciding the appropriate set of
techniques—along with evaluating how applying the strategies will affect the utility of the anonymized results—remains a significant
challenge. To address this problem, we introduce GraphProtector, a visual interface that guides a user through a privacy preservation
pipeline. GraphProtector enables multiple privacy protection schemes which can be simultaneously combined together as a hybrid
approach. To demonstrate the effectiveness of GraphProtector , we report several case studies and feedback collected from interviews
with expert users in various scenarios.

Index Terms—Graph privacy; k–anonymity; structural features; privacy preservation

1 INTRODUCTION

• Xumeng Wang, Wei Chen, Wenlong Chen and Rusheng Pan are with
Zhejiang University. E-mail: wangxumeng@zju.edu.cn;
chenwei@cad.zju.edu.cn; {chenwenlong, panrusheng}@zju.edu.cn. Wei
Chen is corresponding author.

• Jia-Kai Chou, Chris Bryan and Kwan-Liu Ma are with University of
California, Davis. E-mail: {jkchou, cjbryan}@ucdavis.edu,
ma@cs.ucdavis.edu.

• Huihua Guan is with Zhejiang University and Alibaba Group. E-mail:
higtonic@gmail.com.

In today’s world, intra-personal information is regularly collected
and modeled using social networks. Analyzing the structures of
these networks provides insights in the relationships of individuals
within populations. Among the social sciences, network research
serves many purposes, such as detecting communities [52], identifying
lead influencers [40], and examining the spread of information [35].
In corporate environments, network analysis provides support for
business-critical operations [36], including targeted marketing [7,
20], crime and fraud detection [7, 16], and behavioral analysis of
customers [26, 51].

Datasets built using individuals often contain sensitive information.
By analyzing the network, the specific identities and attributes of
ostensibly anonymous individuals can be (either intentionally or
inadvertently) compromised [50]. We refer to this as privacy exposure
or leaking. It is important to perform proper privacy preserving

Manuscript received 31 Mar. 2018; accepted 1 Aug. 2018.
Date of publication 16 Aug. 2018; date of current version 21 Oct. 2018.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TVCG.2018.2865021

1077-2626 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

194 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 25, NO. 1, JANUARY 2019

operations before the data can be shared or released.
Privacy preservation schemes are anonymization approaches that

counteract hypothesized adversarial attack models. A common
approach for network sanitization is to extend the well-known
k–anonymity model [45]: assuming a closed-world, in which no
external dataset/information is considered known by the attackers,
privacy is exposed when a localized structure, property, or group of
individuals can be uniquely identified in a given network dataset.

Most anonymization models, including k–anonymity, focus on
specific subsets of privacy specification. As a mechanism for sanitizing
a dataset, this means they are only able to handle the corresponding type
of attack(s). Considering network privacy in a more comprehensive
manner by simultaneously combining multiple anonymization models
is a trending research direction [27]. A significant challenge in
incorporating multiple models is comparing the effectiveness of
different sanitization schemes. There are two reasons such comparison
is helpful: (1) It provides understanding for how privacy preservation
is being accomplished as an event-driven pipeline of anonymization
actions. (2) It makes visible the change in utility in transitioning from
a raw, leaking dataset to one that is processed and sanitized. Privacy
requirements and utility measurements are highly dependent on dataset
context and user semantics. Thus, providing flexibility and transparency
in the privacy preservation process is a crucial but non-trivial task.

To help accommodate this challenge, we present GraphProtector,
a novel system for preserving privacy in network datasets via
the interactive synthesis and application of multiple anonymization
models. Figure 2 shows the workflow for GraphProtector, which
employs several linked views with data-driven, backend heuristics in a
multi-stage, user-in-the-loop, sanitization pipeline.

GraphProtector allows a user to load a network dataset (in this
paper, we focus on simple graphs) and then employ one or more privacy
preserving mechanisms (which we refer to as protectors) to conduct
targeted dataset anonymization. Protectors act based on a customizable
set of identity priorities and utility metrics. That is, when a protector
finds privacy leaks in the dataset, its removal scheme is based on a
user-defined set of specifications. Protector recommendations can be
customized and compared against each other, allowing for flexible
implementation of dataset sanitization. A provenance component to
GraphProtector provides a historical view of dataset change over the
course of applying multiple protectors, allowing a user to see exactly
how the dataset’s utility and privacy exposure is changing.

GraphProtector is designed around a set of task requirements from
discussion with domain researchers. We present two case studies of
real-world datasets that demonstrate how the system can be used.
We additionally interview several domain experts in privacy and
related research areas and discuss collected feedback. Their comments
shed light on how tools that accommodate visualization-based,
user-in-the-loop workflows like GraphProtector can be integrated
into their normal analysis routines. As an initial attempt at visually
establishing complex, custom privacy protections for graph-based
datasets. Our results open up opportunities for expanded research
in the domain, including open-world considerations, more complex
anonymization models, and multiple privacy preserving operations.

2 RELATED WORK

Privacy Preservation for Graphs. Node-link diagrams, also called
graphs, are visual representations of network datasets. For an overview
of general graph visualization, see [34, 44, 47].

With the boosting of data collection techniques, researchers now
extend classical models for privacy preservation to graph data [56].
Based on differential privacy models, some studies chose to make
appropriate perturbations to the graph structure [41, 49, 53]. For
instance, Xiao et al. [53] abstracted a dendrogram from a simple
graph according to hierarchical random graph (HRG) model. In
reconstructing the original graph based on the dendrogram, they applied
differential privacy methods to add noise so that the privacy issues could
be removed effectively.

Differential privacy approaches are vulnerable to many variants
of de-anonymization attacks, while models based on k–anonymity

may conditionally resist them [27]. K–anonymity [45] anonymizes
individuals by making at least k individuals indistinguishable, where
k is an adjustable, user-defined parameter: the higher the k, the higher
the enabled privacy preservation. The original model, designed for
tabular data, achieves anonymization by obscuring the attribute values.
Later studies regard structural features as a kind of attribute, and have
extended this model to deal with privacy issues in graph data, e.g.
k-degree [33], k-automorphism [57], and k-isomorphism [11]. These
models anonymize structural features in the graph by constructing
equivalent features. Attackers are thus unable to identify which one is
the target. Results generated by these models have an adequate ability
to resist partial attacks, but not all kinds of attacks.

In addition to differential and anonymity approaches, other models
anonymize based on features of the graph itself. Ying and Wu [55]
edit the graph by randomly adding, deleting, and switching edges.
Thompson et al. [46] present two algorithms, bounded t-means
clustering and union-split, that leverage clustering to achieve privacy
preservation by graph clustering methods.
Privacy-Awareness for Other Visualization Techniques. For
general visualization research that integrates privacy awareness (both
sanitization and detection), common approaches fall into two categories:
(1) preserving privacy in the visualization itself (similar to the
aforementioned graph-based work), and (2) using visualization to
facilitate a privacy preservation pipeline.

For the first approach, privacy sanitization is applied directly to the
visualization, creating an updated chart that is sanitized. As an example,
Dasgupta and Kosara [15] extend parallel coordinates by employing a
screen-space sanitization technique. Only an approximate interval of
data values for polylines can be recognized, thus meeting a k–anonymity
threshold. Likewise for summary histograms, Archambault et al. [3]
aggregate components. Considering user diversity, Oksanen et al. [39]
visualize trajectory data by privacy preserving heatmaps.

In other instances, privacy preservation must be accomplished in
a more complex or analytic-specific manner. Thus, interactive and
iterative processing is necessary to conduct an action-based pipeline
for updating the dataset and visualization. Visualization exists within
a system both to analyze and review the state of privacy preservation.
This approach has recently been used by Chou et al. to handle event
sequence datasets and [13] and ontological social network data [12].
The systems provide users with suggested obfuscations for sanitizing
data based on syntactic anonymity models. Similarly, work by Wang et
al. [48] allows a data owner to share sanitized data directly based on a
desired level of privacy preservation.

Like these latter systems, GraphProtector embeds visualization as
a way to provide exploration, understanding, and provenance into a
custom sanitization pipeline.
Evaluating Privacy Preservation. No matter how sanitization is
accomplished, its effectiveness can be evaluated mainly by measuring
the resultant amount of privacy preservation and the change in
visualization utility.

To verify the effect of privacy preservation, de-anonymization
algorithms can be used to simulate attacks. For example, in
k–anonymity approaches, the parameter k reflects the minimum amount
of privacy preservation directly. For simple graphs (which we focus on
in this paper), attacks usually identify sub-graphs and other structures
within the network by querying for specific features [24, 28, 30, 37, 38].
The proportion of individual nodes that can be de-anonymized measures
the amount of privacy preservation.

Unfortunately, privacy protection always comes at the cost of
utility loss. For graphs, there are a variety of widely used ways to
measure utility, including node degree, centrality, graph diameter, and
average path length. These features can be represented in different
forms: a value generalizes the status of the entire graph [42], a
vector illustrates the specialty of each node [6, 8, 18, 19] and a matrix
reflects the relationships between each pair of nodes [23]. For more
specialized scenarios, utility metrics can be directed for specific tasks,
like community detection [54] and role extraction [25].

3 TASK REQUIREMENTS

We focus on simple graphs because they lay the foundation for complex
graphs. Also called strict graph, simple graphs are unweighted and
undirected graphs that do no contain graph loops or multiple edges [21].
Attacks against simple graphs may come from the attribute values of
the individuals represented by nodes or the relation links indicated by
the graph structure. Actually, the relationships in some graph data may
involves more information, which lead to weighted, directed or multiple
edges. We will leave this as future work.

Our targeted users are those who work with sensitive network
datasets, require flexible and personalized privacy preservation, and
are knowledgeable about anonymization approaches for graphs.
This means supporting customized solutions that provide sufficient
protection while minimizing loss of overall dataset utility. Following
the definition of Ji et al. [27], we define “utility” as the similarity of
structural properties.

To drive our design and help define goals, we initially consulted over
a series of meetings with a domain researcher who regularly works with
network datasets and studies privacy preserving algorithms for graph
data. Based on this, we define a set of four task requirements (TR) for
building a visual privacy preserving system:

TR1: Learn about the characteristics of the graph. Making
sense of a graph that contains hundreds or thousands of nodes and
edges is challenging, even when leveraging advanced visualization
techniques like optimized layouts and interaction. Augmenting the base
node-link diagram with additional statistical views (node distributions
by property, etc.) provides a better holistic overview of the dataset and
its properties.

TR2: Set priority before applying privacy preserving
algorithms. Before modifying the graph, users should have the
flexibility to set the priorities or constraints with respect to which nodes
are “touched” first. While different sets of anonymization operations,
i.e., modifying different parts of a graph, may fulfill the same privacy
requirement, some of them can introduce a significant and unwanted
change to the characteristic of the graph (or a specific set of nodes).
Depending on a user’s needs, a region of the graph that meets certain
structural criteria or contains important information should be kept as
intact as possible.

TR3: Evaluate and compare schemes. There are many potential
graph modifications that can fix a privacy leak, depending on which
algorithm(s) is used, which nodes or edges are touched, and how they
are updated. Researchers may choose one of several different schemes,
either using one single or multiple privacy preserving algorithms. Being
able to compare different schemes allows the user to determine the
most appropriate action. This also includes understanding what level
of protection each scheme provides, what steps the scheme takes, and
what is the utility cost of achieving the protection.

TR4: Record the provenance of graph modifications. Privacy
preserving operations modify the topology of a graph, introducing
uncertainty and invariably degrading the graph’s resultant utility. It is
important to allow users to keep track of the changes that have been
made, allowing them to go back and try new schemes if the current
result is deemed unsatisfactory.

4 PRIVACY PRESERVATION APPROACH AND WORKFLOW

We outline the privacy preservation approach employed in
GraphProtector and describe at a high-level its multi-stage,
user-in-the-loop workflow (shown in Figure 2) to identify and sanitize
leaks. In Section 5, we describe in detail how GraphProtector’s
interfaces and interactions facilitate this workflow.

4.1 Structural Features that Expose Privacy

We consider three types of structural features—introduced by Hay et
al. [24]—that can be queried to compromise the privacy of individuals
in simple graphs: node degree, hub fingerprint, and subgraph. With the
development of technology, graph privacy may face more threats. In
this work (as a beginning study), we focus on the three basic issues.

Node degree. The degree (or valency) of a node is the number of
edges connected to that node. Node degree distribution in networks is
usually uneven and skewed, tailing from similarly weighted nodes to
outliers. By submitting queries that return nodes with a specific degree,
attackers may be able to identify individuals with a unique node degree
value in the network.

Hub Fingerprint. A hub refers to a node that contains extreme
or unique feature values. Examples of hubs include nodes with high
degree or nodes that exist on many shortest paths throughout the graph
(i.e., they bridge clusters in the graph or are centrally located).

In many real-world social networks, hubs are high-profile individuals
like celebrities or government officials. It is challenging to mask the
identity of hubs since their “fingerprints” are anomalous compared to
other nodes. Attackers can leverage a node’s connection to one or more
hubs to expose its identity. This is known as a hub fingerprint attack.

Subgraph. A subgraph is a subset of connected nodes extracted
from the network. A common attack involving subgraphs is to first
embed a subgraph with a specifically designed structural connection
to a target graph, then utilize that knowledge to initiate other privacy
attacks [5]. If not enough instances of a “sensitive” subgraph exist in
the network, it constitutes a privacy leak.

As a part of GraphProtector’s workflow, we design “protectors”
(Figure 2(c)) for each of these privacy issues to identify leaks—see
Section 5.2.1 for descriptions.

4.2 Defining a Privacy Preserving Model
When structural features in a graph are identified as exposing privacy,
there are various ways to achieve anonymization. Common methods
include adding/swapping nodes and edges (introducing uncertainty),
merging nodes (generalization), and removing nodes and edges
(suppression) [33].

In our case, we are focusing on protecting the identities of
persons (nodes). To avoid exerting excessive effects on individuals
by introducing “dummy” nodes, we only allow edges to be
modified—specifically, edge addition. By considering only one type
of operation, we reduce computational complexity and avoid potential
operational conflicts. Compared to edge deletion, adding edges
provides an additional benefit: the effect of deleting edges can only
be uni-directional, i.e., it always removes information. In contrast,
adding edges not only introduces previously non-existed information,
in some cases it also removes some information. For example, adding
edges to all the nodes that have a specific node degree can remove
such information in the resultant graph. As a potential future work, we
note that combining multiple sanitization techniques can and should
certainly be explored. However, this is a non-trivial task requiring
careful design and evaluation.

Two approaches can be used to provide privacy protection. Given
a set of privacy leaking nodes: (1) make structural changes to some
of the non-privacy leaking nodes so that at least k sets of nodes obtain
the same features, or (2) make structural changes to the set of privacy
leaking nodes so that their structural features are equivalent to another
set of nodes in the graph. GraphProtector supports both approaches.
Before a protection action is invoked, the system checks to guarantee
that no additional privacy issue is introduced upon making structural
changes.

As an example for the first approach, assume 10–anonymity is
required for a set of 7 privacy leaking nodes with degree = 9. To
ensure protection, 3 non-privacy leaking nodes must be updated to
also have degree = 9. Since protection is achieved by adding edges,
nodes with lower degree have processing priority. To minimize the total
necessary modifications, non-privacy leaking nodes with degree = 8
are first checked, followed by nodes with degree = 7, and so on. This
process continues until enough candidate nodes are found and edges
are added between them.

The second method adds edges directly to the set of privacy leaking
nodes. Using the above scenario, we progressively add edges to the 7
privacy leaking nodes with degree = 9 (making their degrees = 10,11,
or more) until the privacy requirement is met.

WANG ET AL.: GRAPHPROTECTOR: A VISUAL INTERFACE FOR EMPLOYING AND ASSESSING MULTIPLE... 195

operations before the data can be shared or released.
Privacy preservation schemes are anonymization approaches that

counteract hypothesized adversarial attack models. A common
approach for network sanitization is to extend the well-known
k–anonymity model [45]: assuming a closed-world, in which no
external dataset/information is considered known by the attackers,
privacy is exposed when a localized structure, property, or group of
individuals can be uniquely identified in a given network dataset.

Most anonymization models, including k–anonymity, focus on
specific subsets of privacy specification. As a mechanism for sanitizing
a dataset, this means they are only able to handle the corresponding type
of attack(s). Considering network privacy in a more comprehensive
manner by simultaneously combining multiple anonymization models
is a trending research direction [27]. A significant challenge in
incorporating multiple models is comparing the effectiveness of
different sanitization schemes. There are two reasons such comparison
is helpful: (1) It provides understanding for how privacy preservation
is being accomplished as an event-driven pipeline of anonymization
actions. (2) It makes visible the change in utility in transitioning from
a raw, leaking dataset to one that is processed and sanitized. Privacy
requirements and utility measurements are highly dependent on dataset
context and user semantics. Thus, providing flexibility and transparency
in the privacy preservation process is a crucial but non-trivial task.

To help accommodate this challenge, we present GraphProtector,
a novel system for preserving privacy in network datasets via
the interactive synthesis and application of multiple anonymization
models. Figure 2 shows the workflow for GraphProtector, which
employs several linked views with data-driven, backend heuristics in a
multi-stage, user-in-the-loop, sanitization pipeline.

GraphProtector allows a user to load a network dataset (in this
paper, we focus on simple graphs) and then employ one or more privacy
preserving mechanisms (which we refer to as protectors) to conduct
targeted dataset anonymization. Protectors act based on a customizable
set of identity priorities and utility metrics. That is, when a protector
finds privacy leaks in the dataset, its removal scheme is based on a
user-defined set of specifications. Protector recommendations can be
customized and compared against each other, allowing for flexible
implementation of dataset sanitization. A provenance component to
GraphProtector provides a historical view of dataset change over the
course of applying multiple protectors, allowing a user to see exactly
how the dataset’s utility and privacy exposure is changing.

GraphProtector is designed around a set of task requirements from
discussion with domain researchers. We present two case studies of
real-world datasets that demonstrate how the system can be used.
We additionally interview several domain experts in privacy and
related research areas and discuss collected feedback. Their comments
shed light on how tools that accommodate visualization-based,
user-in-the-loop workflows like GraphProtector can be integrated
into their normal analysis routines. As an initial attempt at visually
establishing complex, custom privacy protections for graph-based
datasets. Our results open up opportunities for expanded research
in the domain, including open-world considerations, more complex
anonymization models, and multiple privacy preserving operations.

2 RELATED WORK

Privacy Preservation for Graphs. Node-link diagrams, also called
graphs, are visual representations of network datasets. For an overview
of general graph visualization, see [34, 44, 47].

With the boosting of data collection techniques, researchers now
extend classical models for privacy preservation to graph data [56].
Based on differential privacy models, some studies chose to make
appropriate perturbations to the graph structure [41, 49, 53]. For
instance, Xiao et al. [53] abstracted a dendrogram from a simple
graph according to hierarchical random graph (HRG) model. In
reconstructing the original graph based on the dendrogram, they applied
differential privacy methods to add noise so that the privacy issues could
be removed effectively.

Differential privacy approaches are vulnerable to many variants
of de-anonymization attacks, while models based on k–anonymity

may conditionally resist them [27]. K–anonymity [45] anonymizes
individuals by making at least k individuals indistinguishable, where
k is an adjustable, user-defined parameter: the higher the k, the higher
the enabled privacy preservation. The original model, designed for
tabular data, achieves anonymization by obscuring the attribute values.
Later studies regard structural features as a kind of attribute, and have
extended this model to deal with privacy issues in graph data, e.g.
k-degree [33], k-automorphism [57], and k-isomorphism [11]. These
models anonymize structural features in the graph by constructing
equivalent features. Attackers are thus unable to identify which one is
the target. Results generated by these models have an adequate ability
to resist partial attacks, but not all kinds of attacks.

In addition to differential and anonymity approaches, other models
anonymize based on features of the graph itself. Ying and Wu [55]
edit the graph by randomly adding, deleting, and switching edges.
Thompson et al. [46] present two algorithms, bounded t-means
clustering and union-split, that leverage clustering to achieve privacy
preservation by graph clustering methods.
Privacy-Awareness for Other Visualization Techniques. For
general visualization research that integrates privacy awareness (both
sanitization and detection), common approaches fall into two categories:
(1) preserving privacy in the visualization itself (similar to the
aforementioned graph-based work), and (2) using visualization to
facilitate a privacy preservation pipeline.

For the first approach, privacy sanitization is applied directly to the
visualization, creating an updated chart that is sanitized. As an example,
Dasgupta and Kosara [15] extend parallel coordinates by employing a
screen-space sanitization technique. Only an approximate interval of
data values for polylines can be recognized, thus meeting a k–anonymity
threshold. Likewise for summary histograms, Archambault et al. [3]
aggregate components. Considering user diversity, Oksanen et al. [39]
visualize trajectory data by privacy preserving heatmaps.

In other instances, privacy preservation must be accomplished in
a more complex or analytic-specific manner. Thus, interactive and
iterative processing is necessary to conduct an action-based pipeline
for updating the dataset and visualization. Visualization exists within
a system both to analyze and review the state of privacy preservation.
This approach has recently been used by Chou et al. to handle event
sequence datasets and [13] and ontological social network data [12].
The systems provide users with suggested obfuscations for sanitizing
data based on syntactic anonymity models. Similarly, work by Wang et
al. [48] allows a data owner to share sanitized data directly based on a
desired level of privacy preservation.

Like these latter systems, GraphProtector embeds visualization as
a way to provide exploration, understanding, and provenance into a
custom sanitization pipeline.
Evaluating Privacy Preservation. No matter how sanitization is
accomplished, its effectiveness can be evaluated mainly by measuring
the resultant amount of privacy preservation and the change in
visualization utility.

To verify the effect of privacy preservation, de-anonymization
algorithms can be used to simulate attacks. For example, in
k–anonymity approaches, the parameter k reflects the minimum amount
of privacy preservation directly. For simple graphs (which we focus on
in this paper), attacks usually identify sub-graphs and other structures
within the network by querying for specific features [24, 28, 30, 37, 38].
The proportion of individual nodes that can be de-anonymized measures
the amount of privacy preservation.

Unfortunately, privacy protection always comes at the cost of
utility loss. For graphs, there are a variety of widely used ways to
measure utility, including node degree, centrality, graph diameter, and
average path length. These features can be represented in different
forms: a value generalizes the status of the entire graph [42], a
vector illustrates the specialty of each node [6, 8, 18, 19] and a matrix
reflects the relationships between each pair of nodes [23]. For more
specialized scenarios, utility metrics can be directed for specific tasks,
like community detection [54] and role extraction [25].

3 TASK REQUIREMENTS

We focus on simple graphs because they lay the foundation for complex
graphs. Also called strict graph, simple graphs are unweighted and
undirected graphs that do no contain graph loops or multiple edges [21].
Attacks against simple graphs may come from the attribute values of
the individuals represented by nodes or the relation links indicated by
the graph structure. Actually, the relationships in some graph data may
involves more information, which lead to weighted, directed or multiple
edges. We will leave this as future work.

Our targeted users are those who work with sensitive network
datasets, require flexible and personalized privacy preservation, and
are knowledgeable about anonymization approaches for graphs.
This means supporting customized solutions that provide sufficient
protection while minimizing loss of overall dataset utility. Following
the definition of Ji et al. [27], we define “utility” as the similarity of
structural properties.

To drive our design and help define goals, we initially consulted over
a series of meetings with a domain researcher who regularly works with
network datasets and studies privacy preserving algorithms for graph
data. Based on this, we define a set of four task requirements (TR) for
building a visual privacy preserving system:

TR1: Learn about the characteristics of the graph. Making
sense of a graph that contains hundreds or thousands of nodes and
edges is challenging, even when leveraging advanced visualization
techniques like optimized layouts and interaction. Augmenting the base
node-link diagram with additional statistical views (node distributions
by property, etc.) provides a better holistic overview of the dataset and
its properties.

TR2: Set priority before applying privacy preserving
algorithms. Before modifying the graph, users should have the
flexibility to set the priorities or constraints with respect to which nodes
are “touched” first. While different sets of anonymization operations,
i.e., modifying different parts of a graph, may fulfill the same privacy
requirement, some of them can introduce a significant and unwanted
change to the characteristic of the graph (or a specific set of nodes).
Depending on a user’s needs, a region of the graph that meets certain
structural criteria or contains important information should be kept as
intact as possible.

TR3: Evaluate and compare schemes. There are many potential
graph modifications that can fix a privacy leak, depending on which
algorithm(s) is used, which nodes or edges are touched, and how they
are updated. Researchers may choose one of several different schemes,
either using one single or multiple privacy preserving algorithms. Being
able to compare different schemes allows the user to determine the
most appropriate action. This also includes understanding what level
of protection each scheme provides, what steps the scheme takes, and
what is the utility cost of achieving the protection.

TR4: Record the provenance of graph modifications. Privacy
preserving operations modify the topology of a graph, introducing
uncertainty and invariably degrading the graph’s resultant utility. It is
important to allow users to keep track of the changes that have been
made, allowing them to go back and try new schemes if the current
result is deemed unsatisfactory.

4 PRIVACY PRESERVATION APPROACH AND WORKFLOW

We outline the privacy preservation approach employed in
GraphProtector and describe at a high-level its multi-stage,
user-in-the-loop workflow (shown in Figure 2) to identify and sanitize
leaks. In Section 5, we describe in detail how GraphProtector’s
interfaces and interactions facilitate this workflow.

4.1 Structural Features that Expose Privacy

We consider three types of structural features—introduced by Hay et
al. [24]—that can be queried to compromise the privacy of individuals
in simple graphs: node degree, hub fingerprint, and subgraph. With the
development of technology, graph privacy may face more threats. In
this work (as a beginning study), we focus on the three basic issues.

Node degree. The degree (or valency) of a node is the number of
edges connected to that node. Node degree distribution in networks is
usually uneven and skewed, tailing from similarly weighted nodes to
outliers. By submitting queries that return nodes with a specific degree,
attackers may be able to identify individuals with a unique node degree
value in the network.

Hub Fingerprint. A hub refers to a node that contains extreme
or unique feature values. Examples of hubs include nodes with high
degree or nodes that exist on many shortest paths throughout the graph
(i.e., they bridge clusters in the graph or are centrally located).

In many real-world social networks, hubs are high-profile individuals
like celebrities or government officials. It is challenging to mask the
identity of hubs since their “fingerprints” are anomalous compared to
other nodes. Attackers can leverage a node’s connection to one or more
hubs to expose its identity. This is known as a hub fingerprint attack.

Subgraph. A subgraph is a subset of connected nodes extracted
from the network. A common attack involving subgraphs is to first
embed a subgraph with a specifically designed structural connection
to a target graph, then utilize that knowledge to initiate other privacy
attacks [5]. If not enough instances of a “sensitive” subgraph exist in
the network, it constitutes a privacy leak.

As a part of GraphProtector’s workflow, we design “protectors”
(Figure 2(c)) for each of these privacy issues to identify leaks—see
Section 5.2.1 for descriptions.

4.2 Defining a Privacy Preserving Model
When structural features in a graph are identified as exposing privacy,
there are various ways to achieve anonymization. Common methods
include adding/swapping nodes and edges (introducing uncertainty),
merging nodes (generalization), and removing nodes and edges
(suppression) [33].

In our case, we are focusing on protecting the identities of
persons (nodes). To avoid exerting excessive effects on individuals
by introducing “dummy” nodes, we only allow edges to be
modified—specifically, edge addition. By considering only one type
of operation, we reduce computational complexity and avoid potential
operational conflicts. Compared to edge deletion, adding edges
provides an additional benefit: the effect of deleting edges can only
be uni-directional, i.e., it always removes information. In contrast,
adding edges not only introduces previously non-existed information,
in some cases it also removes some information. For example, adding
edges to all the nodes that have a specific node degree can remove
such information in the resultant graph. As a potential future work, we
note that combining multiple sanitization techniques can and should
certainly be explored. However, this is a non-trivial task requiring
careful design and evaluation.

Two approaches can be used to provide privacy protection. Given
a set of privacy leaking nodes: (1) make structural changes to some
of the non-privacy leaking nodes so that at least k sets of nodes obtain
the same features, or (2) make structural changes to the set of privacy
leaking nodes so that their structural features are equivalent to another
set of nodes in the graph. GraphProtector supports both approaches.
Before a protection action is invoked, the system checks to guarantee
that no additional privacy issue is introduced upon making structural
changes.

As an example for the first approach, assume 10–anonymity is
required for a set of 7 privacy leaking nodes with degree = 9. To
ensure protection, 3 non-privacy leaking nodes must be updated to
also have degree = 9. Since protection is achieved by adding edges,
nodes with lower degree have processing priority. To minimize the total
necessary modifications, non-privacy leaking nodes with degree = 8
are first checked, followed by nodes with degree = 7, and so on. This
process continues until enough candidate nodes are found and edges
are added between them.

The second method adds edges directly to the set of privacy leaking
nodes. Using the above scenario, we progressively add edges to the 7
privacy leaking nodes with degree = 9 (making their degrees = 10,11,
or more) until the privacy requirement is met.

196 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 25, NO. 1, JANUARY 2019

(d) Processed data

The node-link graph

Processing report

Node Indicator Change

1

2

+1.9%

-2.3%

26

31

3 0.0%3

4 -0.4%16

(a) Original data

The node-link graph

Distribution charts

Ranking: 50%
Value: 45

Specifying utility metrics

Specifying node priority

(b) Visual speci�cation
 of priority and utility

Processing priority
High

Low

Do not handle
these individuals

Prioritize these
individuals

Try not to modify
these individuals

Metrics Descriptions Selected

Degree

Diameter

Protector 3
Protector 2

(c) Visual privacy preservation

1) Identifying risk 2) Specifying scheme

3) Comparing schemes 4) Executing scheme

Employ a series of protectors on different issues

Protector 1

K line

Scheme 1

Scheme 2

Utility

Scheme 3

Privacy

Fig. 2. The GraphProtector workflow: (a) A network dataset is loaded and its relationships and properties are visualized. (b) Desired node priority
and utility metrics are specified to direct the subsequent anonymization actions. (c) One or more protectors are employed which modify the dataset’s
topology to preserve privacy. (d) The updated, processed dataset with an accompanying processing report.

Since GraphProtector supports both schemes, to choose an approach
the method that requires the least number of edge additions is selected.
The pseudocode of this process is provided in Appendix I.

4.3 Workflow
At a high-level, GraphProtector’s workflow links together backend
algorithms for detecting, evaluating, and sanitizing privacy leaks in
structural features via several linked, interactive views. Figure 2
shows the major steps and interactions in the workflow. We also
denote the specific tasks from Section 3 that each step in the workflow
accommodates.

Original Data. First, a network dataset is loaded into
GraphProtector. The node-link diagram is shown at the beginning
to facilitate users in selecting the metrics they need. Combined with
the statistical distribution charts of selected metrics, users can quickly
grasp the characteristic of the input network (TR1).

Visual Specification of Priority and Utility. To set the priority of
operations prior to applying privacy preserving algorithms (TR2), sets
of nodes can be grouped into bins. These bins are manually ordered
according to their processing priority, which denotes the order that
they will be first considered as candidate nodes applicable for privacy
preserving operations. Setting lower processing priority to important
nodes reduces the possibility that they will be directly affected by
topology modifications. Particularly significant nodes can even be
locked to prevent from modification.

Prior to applying privacy preserving algorithms, users can set
processing priorities to the nodes in the network (TR2). Nodes can be
grouped into bins, while nodes in the same bin are considered having the
same priority. Setting a lower processing priority to a set of important
nodes can reduce the possibility of those nodes being affected by the
privacy preserving operations. Particularly significant nodes can even
be locked to prevent from modification.

For example, a user might wish to “prioritize the 30% of nodes with
the lowest degree,” or “if possible, do not touch the 1% of nodes with
the highest betweenness.” When the number of feasible operations for
handling a leak is more than one (which is usually the case), decisions
are made according to this user-defined priority. In order to guarantee
the solution, a user should not lock an excessive number of nodes, but
instead define a detailed list of processing priorities.

In addition to priority, the user can specify one or more utility metrics
to evaluate the effects of potential sanitization actions. “Number of
added edges” is the default metric, but there are many ways to quantify
topology modifications (see Section 5.1.3). Topology modifications

induced by privacy preserving operations are expressed as vectors;
the updated graph is compared to the prior via a high-dimensional
similarity calculation.

Visual Privacy Preservation. At this point, the user employs
one or more protectors to sanitize the dataset. This process uses
interactive decision-making based on automatic identification of leaking
structural features (degree, hub fingerprint, subgraph) with application
of our privacy preserving model to modify the graph’s topology and fix
specific leaks.

Since each protector type applies to different structural features, it
disassembles the process of graph modifications into steps. A user
may also employ more than one of each type of protector, for example,
sanitizing multiple subgraphs, or invoke them in any desired order.

Protectors follow a standard framework, shown in Figure 2(c)). After
the protector identifies the risk(s), the user customizes a scheme to guide
the privacy preserving algorithm. Evaluating and comparing schemes
allows for the “best” one (according to the user’s semantics) to be
picked (TR3). For example, an unrealistic scheme may force sequential
processing to achieve the goal with a high price. If the user requires
that “all the nodes have the same degree,” the graph’s original degree
distribution will be completely destroyed and all utility lost. Therefore,
the user should select and execute a more targeted scheme that only
updates the graph such that the affected structural feature no longer
exposes privacy. As schemes are executed, the graph is updated to
provide a provenance view of prior executed protectors (TR4).

Application of protectors follows a unified flow, shown in
Figure 2(c)). First, privacy risks are identified based on the user-defined
k value(s). Then, the user customizes a scheme or multiple schemes to
guide the privacy preserving algorithm. Next, performing comparison
and evaluation to the schemes allows for the “best” one (according to
the user’s semantics) to be picked (TR3). For example, an unrealistic
scheme may force sequential processing to achieve the goal with a high
price. If the user requires that “all the nodes have the same degree,”
the graph’s original degree distribution will be completely destroyed.
Therefore, the user should select and execute a more targeted scheme
that only updates the graph such that the affected structural feature no
longer exposes privacy. As schemes are executed, the graph is updated
to provide a provenance view of prior executed protectors (TR4).

Processed Data. Once the user is satisfied that the network is
sanitized, the “final version” can be exported and reviewed (TR3).
This includes the updated dataset (the node-link graph) as well as a
processing report of changes.

PRIORITY

UTILITY
Metrics

Joint degree

Diameter

Graph

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Betweenness(0~0.5)

0.25

0.20

0.15

0.10

0.05

0.00

Amount (49/167)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Degree(0.3~0.8)

70

60

50

40

30

20

10

0

Amount (49/173)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Closeness(0~0.5)

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

Amount (49/167)

49

280

1

Degree
Closeness
Betweenness

Degree
Closeness
Betweenness

Other nodes

0.3~0.8
0~0.5
0~0.5

0.8~1
0.99~1
0.99~1

P
ro

c
e
s
s
in

g
 p

rio
rity

H
ig

h
L
o
w

3
Degree
Closeness
Betweenness

0.99~1
0~1
0~1

Path length

Degree

Descriptions

The number of edges connecting nodes of degree
k with nodes of degree l and describes the degree
correlations.

The maximum eccentricity.

The average shortest path length.

The degree vector.

Selected

Evaluate metrics similarity by: Cosine similartiy

New links

Locked nodes

Highlighted nodes

Highlighted && locked nodes

(a)

(c)

(b)

Fig. 3. The interface for visual specification of priority and utility is composed of three views: (a) the node-link view, rendering the overview of the
graph, (b) the utility view and (c) the priority view for specifying node priority.

5 SYSTEM DESIGN

We now describe in detail the primary views and interactions in
GraphProtector. The system is based around two interfaces (Figures 1
and 3) and five linked views. Throughout this section, we use
a Facebook friendship dataset that contains 333 nodes and 2,519
edges [32].

5.1 Interface for Specification of Priority and Utility

The graph interface contains three views: a visualization of the loaded
graph and two panels for specifying priority and utility metrics.

5.1.1 Graph View

The first view visualizes the network dataset using a node-link diagram
and force-directed layout, as shown in Figure 3(a) (TR1). Nodes and
edges in the graph are highlighted based on interactions and operations
made during GraphProtector’s workflow. In addition, users are allowed
to check the clustering results [22] when comparing the processed data
and original data.

5.1.2 Priority View

The priority view initializes by showing a list of derived features for
nodes: degree, closeness, betweenness, eigenvector, and constraint.
Selecting a set of these metrics creates a set of line charts showing the
statistical distributions of nodes for each selection (TR1). For example,
in Figure 3(b), the user has selected node degree, closeness, and
betweenness centrality. Each chart displays the relationship between
the metric’s values (y–axis) and the percentile rankings of the nodes
(x–axis).

By brushing on the line charts, the user can specify a set of nodes
(based on the intersection of brushes). This set can be created as a bin
for establishing node priority (TR2), which is placed in the vertical
stack to the right of the line charts. (By default, all nodes start out in
the same box and the stack only contains this one box.) As new boxes
are created and added to the stack, the user can drag and drop boxes
to switch their priority ordering. Boxes below the blue “lock ” line
are locked—nodes in the boxes will not be changed by any privacy
preservation operation.

5.1.3 Utility View
The utility view, shown in Figure 3(c), lists out the utility metrics
that can be employed to evaluate the change in utility after privacy
preserving operations are applied to the dataset (TR3). The user
can select one or multiple metrics from the following: joint degree,
diameter, path length, clustering coefficient, and node degree.

While structural modifications to the graph (i.e., adding edges) are
stored as vectors, a similarity measure is required to evaluate the change
in utility (with respect to the prior state of the graph). We provide four
common metrics for this: Euclidean distance, Manhattan distance,
cosine similarity and Jaccard similarity.

5.2 Interface for Privacy Preservation
After a dataset is loaded and the user has specified priority and utility
settings, the Protector Interface can be opened. Here, visual privacy
preservation is enacted and the user can examine the series of changes
to the graph’s provenance. At any point, the user may also navigate back
to the graph interface to view the current, updated view of the dataset,
as changes are reflected in the graph view. The protector interface
contains two panels: the graph protector view and the provenance view.

5.2.1 Graph Protector View
Protectors are selected, configured, and executed using the graph
protector view (Figure 1(c)). To start, the user creates a desired
protector by clicking the corresponding label at the top of the panel.
Adding multiple protectors of the same type is possible by clicking
on the same button multiple times. Though applying the protectors
follows the same sequence of actions (Section 4.3), each type of the
protectors is individually designed according to the structural feature(s)
it sanitizes.

Degree Protector. The degree protector shows the degree
distribution of nodes as a bar chart (as in Figure 1(a) and Figure 4). As
degree distribution is usually skewed in graph datasets, this means that
some degree bins will contain no nodes, introducing gaps in the chart.
To address this, we remove gaps and add a “degree gaps” tick mark to
denote jumps, as shown in Figure 4.

To set up a privacy protection scheme, with respect to node degrees
in this case, the user first needs to assign the desired k value. To do that,

WANG ET AL.: GRAPHPROTECTOR: A VISUAL INTERFACE FOR EMPLOYING AND ASSESSING MULTIPLE... 197

(d) Processed data

The node-link graph

Processing report

Node Indicator Change

1

2

+1.9%

-2.3%

26

31

3 0.0%3

4 -0.4%16

(a) Original data

The node-link graph

Distribution charts

Ranking: 50%
Value: 45

Specifying utility metrics

Specifying node priority

(b) Visual speci�cation
 of priority and utility

Processing priority
High

Low

Do not handle
these individuals

Prioritize these
individuals

Try not to modify
these individuals

Metrics Descriptions Selected

Degree

Diameter

Protector 3
Protector 2

(c) Visual privacy preservation

1) Identifying risk 2) Specifying scheme

3) Comparing schemes 4) Executing scheme

Employ a series of protectors on different issues

Protector 1

K line

Scheme 1

Scheme 2

Utility

Scheme 3

Privacy

Fig. 2. The GraphProtector workflow: (a) A network dataset is loaded and its relationships and properties are visualized. (b) Desired node priority
and utility metrics are specified to direct the subsequent anonymization actions. (c) One or more protectors are employed which modify the dataset’s
topology to preserve privacy. (d) The updated, processed dataset with an accompanying processing report.

Since GraphProtector supports both schemes, to choose an approach
the method that requires the least number of edge additions is selected.
The pseudocode of this process is provided in Appendix I.

4.3 Workflow
At a high-level, GraphProtector’s workflow links together backend
algorithms for detecting, evaluating, and sanitizing privacy leaks in
structural features via several linked, interactive views. Figure 2
shows the major steps and interactions in the workflow. We also
denote the specific tasks from Section 3 that each step in the workflow
accommodates.

Original Data. First, a network dataset is loaded into
GraphProtector. The node-link diagram is shown at the beginning
to facilitate users in selecting the metrics they need. Combined with
the statistical distribution charts of selected metrics, users can quickly
grasp the characteristic of the input network (TR1).

Visual Specification of Priority and Utility. To set the priority of
operations prior to applying privacy preserving algorithms (TR2), sets
of nodes can be grouped into bins. These bins are manually ordered
according to their processing priority, which denotes the order that
they will be first considered as candidate nodes applicable for privacy
preserving operations. Setting lower processing priority to important
nodes reduces the possibility that they will be directly affected by
topology modifications. Particularly significant nodes can even be
locked to prevent from modification.

Prior to applying privacy preserving algorithms, users can set
processing priorities to the nodes in the network (TR2). Nodes can be
grouped into bins, while nodes in the same bin are considered having the
same priority. Setting a lower processing priority to a set of important
nodes can reduce the possibility of those nodes being affected by the
privacy preserving operations. Particularly significant nodes can even
be locked to prevent from modification.

For example, a user might wish to “prioritize the 30% of nodes with
the lowest degree,” or “if possible, do not touch the 1% of nodes with
the highest betweenness.” When the number of feasible operations for
handling a leak is more than one (which is usually the case), decisions
are made according to this user-defined priority. In order to guarantee
the solution, a user should not lock an excessive number of nodes, but
instead define a detailed list of processing priorities.

In addition to priority, the user can specify one or more utility metrics
to evaluate the effects of potential sanitization actions. “Number of
added edges” is the default metric, but there are many ways to quantify
topology modifications (see Section 5.1.3). Topology modifications

induced by privacy preserving operations are expressed as vectors;
the updated graph is compared to the prior via a high-dimensional
similarity calculation.

Visual Privacy Preservation. At this point, the user employs
one or more protectors to sanitize the dataset. This process uses
interactive decision-making based on automatic identification of leaking
structural features (degree, hub fingerprint, subgraph) with application
of our privacy preserving model to modify the graph’s topology and fix
specific leaks.

Since each protector type applies to different structural features, it
disassembles the process of graph modifications into steps. A user
may also employ more than one of each type of protector, for example,
sanitizing multiple subgraphs, or invoke them in any desired order.

Protectors follow a standard framework, shown in Figure 2(c)). After
the protector identifies the risk(s), the user customizes a scheme to guide
the privacy preserving algorithm. Evaluating and comparing schemes
allows for the “best” one (according to the user’s semantics) to be
picked (TR3). For example, an unrealistic scheme may force sequential
processing to achieve the goal with a high price. If the user requires
that “all the nodes have the same degree,” the graph’s original degree
distribution will be completely destroyed and all utility lost. Therefore,
the user should select and execute a more targeted scheme that only
updates the graph such that the affected structural feature no longer
exposes privacy. As schemes are executed, the graph is updated to
provide a provenance view of prior executed protectors (TR4).

Application of protectors follows a unified flow, shown in
Figure 2(c)). First, privacy risks are identified based on the user-defined
k value(s). Then, the user customizes a scheme or multiple schemes to
guide the privacy preserving algorithm. Next, performing comparison
and evaluation to the schemes allows for the “best” one (according to
the user’s semantics) to be picked (TR3). For example, an unrealistic
scheme may force sequential processing to achieve the goal with a high
price. If the user requires that “all the nodes have the same degree,”
the graph’s original degree distribution will be completely destroyed.
Therefore, the user should select and execute a more targeted scheme
that only updates the graph such that the affected structural feature no
longer exposes privacy. As schemes are executed, the graph is updated
to provide a provenance view of prior executed protectors (TR4).

Processed Data. Once the user is satisfied that the network is
sanitized, the “final version” can be exported and reviewed (TR3).
This includes the updated dataset (the node-link graph) as well as a
processing report of changes.

PRIORITY

UTILITY
Metrics

Joint degree

Diameter

Graph

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Betweenness(0~0.5)

0.25

0.20

0.15

0.10

0.05

0.00

Amount (49/167)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Degree(0.3~0.8)

70

60

50

40

30

20

10

0

Amount (49/173)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Closeness(0~0.5)

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

Amount (49/167)

49

280

1

Degree
Closeness
Betweenness

Degree
Closeness
Betweenness

Other nodes

0.3~0.8
0~0.5
0~0.5

0.8~1
0.99~1
0.99~1

P
ro

c
e
s
s
in

g
 p

rio
rity

H
ig

h
L
o
w

3
Degree
Closeness
Betweenness

0.99~1
0~1
0~1

Path length

Degree

Descriptions

The number of edges connecting nodes of degree
k with nodes of degree l and describes the degree
correlations.

The maximum eccentricity.

The average shortest path length.

The degree vector.

Selected

Evaluate metrics similarity by: Cosine similartiy

New links

Locked nodes

Highlighted nodes

Highlighted && locked nodes

(a)

(c)

(b)

Fig. 3. The interface for visual specification of priority and utility is composed of three views: (a) the node-link view, rendering the overview of the
graph, (b) the utility view and (c) the priority view for specifying node priority.

5 SYSTEM DESIGN

We now describe in detail the primary views and interactions in
GraphProtector. The system is based around two interfaces (Figures 1
and 3) and five linked views. Throughout this section, we use
a Facebook friendship dataset that contains 333 nodes and 2,519
edges [32].

5.1 Interface for Specification of Priority and Utility

The graph interface contains three views: a visualization of the loaded
graph and two panels for specifying priority and utility metrics.

5.1.1 Graph View

The first view visualizes the network dataset using a node-link diagram
and force-directed layout, as shown in Figure 3(a) (TR1). Nodes and
edges in the graph are highlighted based on interactions and operations
made during GraphProtector’s workflow. In addition, users are allowed
to check the clustering results [22] when comparing the processed data
and original data.

5.1.2 Priority View

The priority view initializes by showing a list of derived features for
nodes: degree, closeness, betweenness, eigenvector, and constraint.
Selecting a set of these metrics creates a set of line charts showing the
statistical distributions of nodes for each selection (TR1). For example,
in Figure 3(b), the user has selected node degree, closeness, and
betweenness centrality. Each chart displays the relationship between
the metric’s values (y–axis) and the percentile rankings of the nodes
(x–axis).

By brushing on the line charts, the user can specify a set of nodes
(based on the intersection of brushes). This set can be created as a bin
for establishing node priority (TR2), which is placed in the vertical
stack to the right of the line charts. (By default, all nodes start out in
the same box and the stack only contains this one box.) As new boxes
are created and added to the stack, the user can drag and drop boxes
to switch their priority ordering. Boxes below the blue “lock ” line
are locked—nodes in the boxes will not be changed by any privacy
preservation operation.

5.1.3 Utility View
The utility view, shown in Figure 3(c), lists out the utility metrics
that can be employed to evaluate the change in utility after privacy
preserving operations are applied to the dataset (TR3). The user
can select one or multiple metrics from the following: joint degree,
diameter, path length, clustering coefficient, and node degree.

While structural modifications to the graph (i.e., adding edges) are
stored as vectors, a similarity measure is required to evaluate the change
in utility (with respect to the prior state of the graph). We provide four
common metrics for this: Euclidean distance, Manhattan distance,
cosine similarity and Jaccard similarity.

5.2 Interface for Privacy Preservation
After a dataset is loaded and the user has specified priority and utility
settings, the Protector Interface can be opened. Here, visual privacy
preservation is enacted and the user can examine the series of changes
to the graph’s provenance. At any point, the user may also navigate back
to the graph interface to view the current, updated view of the dataset,
as changes are reflected in the graph view. The protector interface
contains two panels: the graph protector view and the provenance view.

5.2.1 Graph Protector View
Protectors are selected, configured, and executed using the graph
protector view (Figure 1(c)). To start, the user creates a desired
protector by clicking the corresponding label at the top of the panel.
Adding multiple protectors of the same type is possible by clicking
on the same button multiple times. Though applying the protectors
follows the same sequence of actions (Section 4.3), each type of the
protectors is individually designed according to the structural feature(s)
it sanitizes.

Degree Protector. The degree protector shows the degree
distribution of nodes as a bar chart (as in Figure 1(a) and Figure 4). As
degree distribution is usually skewed in graph datasets, this means that
some degree bins will contain no nodes, introducing gaps in the chart.
To address this, we remove gaps and add a “degree gaps” tick mark to
denote jumps, as shown in Figure 4.

To set up a privacy protection scheme, with respect to node degrees
in this case, the user first needs to assign the desired k value. To do that,

198 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 25, NO. 1, JANUARY 2019

we define two types of settings. First, a “global” kG setting enforces the
k–anonymity for the entire node degree distribution (unless otherwise
specified). Brushing along the bars sets “local” kL values for the nodes
with selected ranges of degrees. The desired kL values for each of
these localized regions can be adjusted independently. In Figure 4, the
global kG is set to 2 and there are two local kL values set for nodes with
relatively low and high degrees (set to 6 and 1, respectively).

When interacting with the degree protector, the system highlights
degree bins based on their status. Bins that do not meet k–anonymity
(they are below their kG or kL line) are given a red border; locked nodes
colored blue.

After specifying a scheme, the user can click on the “preview ”
icon to see how the graph will be updated as if the scheme is accepted
and executed. Modifications that will happen to the graph are noted on
the bar chart using T-marks: to indicate an increase in the number of
nodes to a bin and to indicate a decrease. A more detailed example
can be seen on the top of Figure 1(a).

Multiple schemes can be previewed and compared by clicking on the
“camera ” icon. At this point, one of the schemes can be accepted
and executed.

10

8

6

4

2

0

Degree

Node Amount

Degree gaps

1 6 11 16 21 26 33 39 45 55 64 75

“k” line

Satisfied

Unsatisfied

Locked

Local “k” settings

Global “k” setting

Fig. 4. The module design for the degree protector.

Hub Fingerprint Protector. The hub fingerprint protector is
shown below the degree protector in Figure 1(a). Opening this protector
initially shows a table of nodes (left side of the protector). The user
must first identify a set of nodes that are to be considered as hubs.
Usually, nodes with high degree or centrality are strong candidates.

Rows can be sorted by the metrics selected in the priority view,
which are the metrics that the user considers as important to perform
the analysis tasks. When nodes are toggled as hubs, they are pinned
to the top of the list (see Figure 5(a)). After each hub selection,
GraphProtector re-generates the fingerprints of the other nodes in the
graph. Since a fingerprint for a node is determined by its relationship
with hub nodes (i.e., is it connected or not?), we generate fingerprints
based on whether a node is an incident to each of the hub nodes.

Based on the selection of hub nodes, we categorize incident
(non-hub) nodes based on their relationships to the hubs. For
Figure 5(a), since there are three selected hubs, nodes are categorized
into four groups: (1) no connection to any hubs, (2) connection to one
hub, (3) connection to two hubs, or (4) connection to all three hubs.

This categorization is used to construct a hub tree, which shows how
likely a hub fingerprint attack could occur for the selected hubs. For
Figure 5(a), its corresponding hub tree is shown in Figure 5(c)). This
tree has four levels (based on the four categories), where each level
corresponds to the relationship category (top level contains nodes with
no relationship, etc.). At each row, squared bins are created to represent
all possible combinations of selected hubs at that level. For example,
at the third row (level 2) of Figure 5(c), each squared bin corresponds
to a possible combination of two hub nodes out of the three selected
hubs. Edges between bins in neighboring levels indicate that nodes in
a fingerprint node of upper level (connected to lesser hub nodes) can
be moved to a fingerprint node of lower level (connected to more hub
nodes) by adding edges to them.

The encoding of a fingerprint node is shown in Figure 5(b). The
encoding can be interpreted as a metaphor for filling water into a bottle.
Encodings are similar to the degree protector: the dashed k line is the
desired water level, indicating the privacy level to be achieved. The
accumulated height of the blue bar (the number of locked nodes) and
the gray bar (the number of nodes that are not locked) shows the total
number of nodes that have the same corresponding fingerprint. The

gray boxes on the right-hand side of the fingerprint node describe the
type of fingerprint. In Figure 5(b), we demonstrate a fingerprint node
that contains nodes linked to only the third hub node.

(a) Selected hubs

(c) The hub tree

0

1

2

3

N
u

m
b

e
r o

f c
o

n
n

e
c
te

d
 h

u
b

s

(b) The encodings of fingerprint nodes

ID DEG CLO BET Selected

56 77 0.369 0.020

67 75 0.372 0.018

271 72 0.368 0.015

“k” line

Satisfied

Connected with
 related hubsLocked

Disconnected with
 related hubs

322 71 0.376 0.043322 71 0.376 0.043

Fig. 5. (a) The three nodes with highest degree are selected as hubs. (b)
For each fingerprint nodes, the feature statistic is shown on the left and
the feature (connection with the hubs) is explained on the right. (c) The
hub tree constructed based on the three hubs shown in (a).

In some cases, many fingerprints are empty—that is, no nodes link
to the specific sets of hubs. Since it is redundant and can be misleading
at the time to display those empty fingerprint nodes, we provide a
mechanism to allow users to collapse those nodes to show a more
compact layout. Figure 6 demonstrates an example.

Like the degree protector, the hub fingerprint protector includes
functionality to preview and compare schemes. Upon deciding on a
scheme, the user can execute the scheme and update the graph.

Remove

empty sets

Empty sets

Fig. 6. The hub tree before and after removing empty sets.

Subgraph Protector. Subgraph support is fundamentally
different than degree and hub fingerprint, since subgraphs are based on
semantic knowledge about unique substructures within the dataset.
Since the potential number of subgraphs in a network is almost
combinatorial, we require the user to know what subgraph structures to
sanitize.

Upon opening this protector, the user initially specifies an exemplar
subgraph. This queries the graph and shows instances of matched
subgraphs. Matched subgraphs can be inspected individually to check
whether they contain any privacy issues. Exemplars can be derived
from classic types of subgraphs by modulating their parameters [10] or
loaded from prepared files.

Instead of requiring exact matches, we employ an error-tolerant [17]
approach for matching subgraphs. Tolerance is a parameter between 0
and 1. For example, a subgraph of 4 nodes and 5 edges is considered
matched to a complete graph with 4 nodes (and 6 edges) given a
tolerance value of 1/6, as shown in Figure 7. The method of VF2 [14]
is employed to identify all subgraphs within the tolerance. Identified
subgraphs within the set tolerance value are called “detected subgraphs”.
If the number of detected subgraphs is less than user-defined k, we then
keep searching for similar subgraphs using a larger tolerance (which
are called “similar subgraphs”). Similar subgraphs are the candidate
subgraphs that can be used to protect the privacy of detected subgraphs.

For similar subgraphs, we use dashed edges to indicate where edges will
be added to make them identical to the detected subgraphs. The user
can additionally review node information and highlight their positions,
as shown in the subgraph protector in Figure 1(a).

(a) The input exemplar

(a complete graph (4))

(b) Two detected subgraphs

(with tolerances of 0 and 1/6)

(c) Two similar subgraphs

(with a tolerance of 1/3)

Fig. 7. Inputting the exemplar (a) with a matching tolerance as 1/6, the
subgraphs in (b) are qualified, while the subgraphs in (c) are not. The
relative positions of the nodes in the subgraphs are preserved.

5.2.2 Provenance View

The provenance view provides a summary of all prior executed privacy
preserving operations (TR4). It consists of two parts. The first part is a
density-estimated plot which provides a quick overview of the graph.
The second part shows the change of utility caused by each of the
privacy preserving schemes. On top of the density-estimated plot, we
rendered the edges added to the graph after applying the corresponding
privacy preserving scheme. We originally considered two approaches
for the density-estimated plot: kernel density estimation (KDE) [43]
and curve density estimates (CDE) [31]. For our context, CDE is more
suitable as it displays edge distribution through a linear kernel and thus
better retains the edges’ finer visual appearance (see comparison in
Figure 8).

As shown in Figure 1(b), the step histories in the provenance view
show the changes made by prior protector operations. The graph is
rendered using CDE with added edges overlaid at each step. Changes
for utility metrics are shown to the right of each history view. Increases
or decreases in values are highlighted in green and red, respectively,
while if the metric outputs a similarity score it is colored in blue. The
current state of the graph is shown at the end of the provenance view.
The user can see the specific changes made by a protector in the graph
view by clicking on its corresponding provenance view. If a user is
dissatisfied with the current result, the most recent operation can be
cancelled from the provenance view. If a user is satisfied with the state
of the processed dataset, it can be exported into a documentary report,
containing the sanitized data and a post-processing report of changes
made.

(a) The node-link view (c) CDE(b) KDE

Fig. 8. Visualizing a graph with the graph view (a), KDE (b) and CDE (c).

6 CASE STUDIES

We present two case studies that demonstrate using GraphProtector.
The first compares protector schemes against each other, while the
second deals with setting processing priorities and utility preservation
metrics.

6.1 Email Communication Dataset
The email communication dataset in this first case study records 5,451
email contacts among 1,133 users in a university [2], and is shown as a
node-link diagram in Figure 9(a).

1129

4

Degree
Betweenness

Other nodes

0~0.5
0.8~1

Processing priority
H

igh
Low

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Degree

(0~0.5)70

60

50

40

30

20

10

0

Amount (4/608)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Betweenness

(0.8~1)0.25

0.20

0.15

0.10

0.05

0.00

Amount (4/227)

(a) The node-link graph

(b) The priority setting

Fig. 9. The email communication dataset. (a) In the graph view, the
locked nodes are highlighted in blue. (b) In the priority view, the nodes
that have “degree less than 50th percentile” and “betweenness greater
than 80th percentile” are selected by brushing.

To start, node degree and betweenness are chosen for specifying
priority. Figure 9(b) shows the distributions of these two metrics. By
brushing the two charts, we quickly find that only 4 nodes have a low
degree and a high betweenness (Figure 9)). We then add these nodes
to the processing priority list and lock them to ensure they are not
touched by protector operations. We also select the following metrics
for utility analysis: path length, joint degree, clustering coefficient and
betweenness.

After going to the interface for privacy preservation, we first create
a node degree protector with two schemes. For the first scheme (S1), to
simulate a purely automatic model, we set the global k (the kG value) to
5, as seen in Figure 10(a). For the second scheme (S2), we set kG = 3,
but then brushes to assign a localized kL = 7 value for nodes with lower
degree (below 30), as shown in Figure 10(b).

By comparing the utility changes required to execute each scheme
(shown on the bar charts), we notice that S1 requires not only adding
nearly double amount of edges, it also results in larger impact to the
other utility measures. We therefore choose to perform S2.

Next, we open a subgraph protector and check if there are privacy
issues caused by the following five types of classic subgraphs: complete,
circle, path, star and complete bipartite. We input several generalized
exemplar subgraphs for each type and set the tolerance to 0. As a
result, we find a subgraph, Figure 11(b), that matches a pre-defined
bipartite graph exemplar of size (6,3), as seen in Figure 11(a). To
achieve 2-anonymity for this case, we continue to search for matching
subgraphs with a relaxed tolerance value. When the tolerance is set
to 1/9, one additional matching subgraph, Figure 11(c), can be found.
Adding two edges to the matched subgraph, as presented as the dashed
lines in Figure 11(c), fixes the privacy leak.

6.2 Face-to-Face Contacts Dataset

For the second case study, we use a dataset describing face-to-face
contacts during an exhibition [1]. Edges represent conversations

WANG ET AL.: GRAPHPROTECTOR: A VISUAL INTERFACE FOR EMPLOYING AND ASSESSING MULTIPLE... 199

we define two types of settings. First, a “global” kG setting enforces the
k–anonymity for the entire node degree distribution (unless otherwise
specified). Brushing along the bars sets “local” kL values for the nodes
with selected ranges of degrees. The desired kL values for each of
these localized regions can be adjusted independently. In Figure 4, the
global kG is set to 2 and there are two local kL values set for nodes with
relatively low and high degrees (set to 6 and 1, respectively).

When interacting with the degree protector, the system highlights
degree bins based on their status. Bins that do not meet k–anonymity
(they are below their kG or kL line) are given a red border; locked nodes
colored blue.

After specifying a scheme, the user can click on the “preview ”
icon to see how the graph will be updated as if the scheme is accepted
and executed. Modifications that will happen to the graph are noted on
the bar chart using T-marks: to indicate an increase in the number of
nodes to a bin and to indicate a decrease. A more detailed example
can be seen on the top of Figure 1(a).

Multiple schemes can be previewed and compared by clicking on the
“camera ” icon. At this point, one of the schemes can be accepted
and executed.

10

8

6

4

2

0

Degree

Node Amount

Degree gaps

1 6 11 16 21 26 33 39 45 55 64 75

“k” line

Satisfied

Unsatisfied

Locked

Local “k” settings

Global “k” setting

Fig. 4. The module design for the degree protector.

Hub Fingerprint Protector. The hub fingerprint protector is
shown below the degree protector in Figure 1(a). Opening this protector
initially shows a table of nodes (left side of the protector). The user
must first identify a set of nodes that are to be considered as hubs.
Usually, nodes with high degree or centrality are strong candidates.

Rows can be sorted by the metrics selected in the priority view,
which are the metrics that the user considers as important to perform
the analysis tasks. When nodes are toggled as hubs, they are pinned
to the top of the list (see Figure 5(a)). After each hub selection,
GraphProtector re-generates the fingerprints of the other nodes in the
graph. Since a fingerprint for a node is determined by its relationship
with hub nodes (i.e., is it connected or not?), we generate fingerprints
based on whether a node is an incident to each of the hub nodes.

Based on the selection of hub nodes, we categorize incident
(non-hub) nodes based on their relationships to the hubs. For
Figure 5(a), since there are three selected hubs, nodes are categorized
into four groups: (1) no connection to any hubs, (2) connection to one
hub, (3) connection to two hubs, or (4) connection to all three hubs.

This categorization is used to construct a hub tree, which shows how
likely a hub fingerprint attack could occur for the selected hubs. For
Figure 5(a), its corresponding hub tree is shown in Figure 5(c)). This
tree has four levels (based on the four categories), where each level
corresponds to the relationship category (top level contains nodes with
no relationship, etc.). At each row, squared bins are created to represent
all possible combinations of selected hubs at that level. For example,
at the third row (level 2) of Figure 5(c), each squared bin corresponds
to a possible combination of two hub nodes out of the three selected
hubs. Edges between bins in neighboring levels indicate that nodes in
a fingerprint node of upper level (connected to lesser hub nodes) can
be moved to a fingerprint node of lower level (connected to more hub
nodes) by adding edges to them.

The encoding of a fingerprint node is shown in Figure 5(b). The
encoding can be interpreted as a metaphor for filling water into a bottle.
Encodings are similar to the degree protector: the dashed k line is the
desired water level, indicating the privacy level to be achieved. The
accumulated height of the blue bar (the number of locked nodes) and
the gray bar (the number of nodes that are not locked) shows the total
number of nodes that have the same corresponding fingerprint. The

gray boxes on the right-hand side of the fingerprint node describe the
type of fingerprint. In Figure 5(b), we demonstrate a fingerprint node
that contains nodes linked to only the third hub node.

(a) Selected hubs

(c) The hub tree

0

1

2

3

N
u

m
b

e
r o

f c
o

n
n

e
c
te

d
 h

u
b

s

(b) The encodings of fingerprint nodes

ID DEG CLO BET Selected

56 77 0.369 0.020

67 75 0.372 0.018

271 72 0.368 0.015

“k” line

Satisfied

Connected with
 related hubsLocked

Disconnected with
 related hubs

322 71 0.376 0.043322 71 0.376 0.043

Fig. 5. (a) The three nodes with highest degree are selected as hubs. (b)
For each fingerprint nodes, the feature statistic is shown on the left and
the feature (connection with the hubs) is explained on the right. (c) The
hub tree constructed based on the three hubs shown in (a).

In some cases, many fingerprints are empty—that is, no nodes link
to the specific sets of hubs. Since it is redundant and can be misleading
at the time to display those empty fingerprint nodes, we provide a
mechanism to allow users to collapse those nodes to show a more
compact layout. Figure 6 demonstrates an example.

Like the degree protector, the hub fingerprint protector includes
functionality to preview and compare schemes. Upon deciding on a
scheme, the user can execute the scheme and update the graph.

Remove

empty sets

Empty sets

Fig. 6. The hub tree before and after removing empty sets.

Subgraph Protector. Subgraph support is fundamentally
different than degree and hub fingerprint, since subgraphs are based on
semantic knowledge about unique substructures within the dataset.
Since the potential number of subgraphs in a network is almost
combinatorial, we require the user to know what subgraph structures to
sanitize.

Upon opening this protector, the user initially specifies an exemplar
subgraph. This queries the graph and shows instances of matched
subgraphs. Matched subgraphs can be inspected individually to check
whether they contain any privacy issues. Exemplars can be derived
from classic types of subgraphs by modulating their parameters [10] or
loaded from prepared files.

Instead of requiring exact matches, we employ an error-tolerant [17]
approach for matching subgraphs. Tolerance is a parameter between 0
and 1. For example, a subgraph of 4 nodes and 5 edges is considered
matched to a complete graph with 4 nodes (and 6 edges) given a
tolerance value of 1/6, as shown in Figure 7. The method of VF2 [14]
is employed to identify all subgraphs within the tolerance. Identified
subgraphs within the set tolerance value are called “detected subgraphs”.
If the number of detected subgraphs is less than user-defined k, we then
keep searching for similar subgraphs using a larger tolerance (which
are called “similar subgraphs”). Similar subgraphs are the candidate
subgraphs that can be used to protect the privacy of detected subgraphs.

For similar subgraphs, we use dashed edges to indicate where edges will
be added to make them identical to the detected subgraphs. The user
can additionally review node information and highlight their positions,
as shown in the subgraph protector in Figure 1(a).

(a) The input exemplar

(a complete graph (4))

(b) Two detected subgraphs

(with tolerances of 0 and 1/6)

(c) Two similar subgraphs

(with a tolerance of 1/3)

Fig. 7. Inputting the exemplar (a) with a matching tolerance as 1/6, the
subgraphs in (b) are qualified, while the subgraphs in (c) are not. The
relative positions of the nodes in the subgraphs are preserved.

5.2.2 Provenance View

The provenance view provides a summary of all prior executed privacy
preserving operations (TR4). It consists of two parts. The first part is a
density-estimated plot which provides a quick overview of the graph.
The second part shows the change of utility caused by each of the
privacy preserving schemes. On top of the density-estimated plot, we
rendered the edges added to the graph after applying the corresponding
privacy preserving scheme. We originally considered two approaches
for the density-estimated plot: kernel density estimation (KDE) [43]
and curve density estimates (CDE) [31]. For our context, CDE is more
suitable as it displays edge distribution through a linear kernel and thus
better retains the edges’ finer visual appearance (see comparison in
Figure 8).

As shown in Figure 1(b), the step histories in the provenance view
show the changes made by prior protector operations. The graph is
rendered using CDE with added edges overlaid at each step. Changes
for utility metrics are shown to the right of each history view. Increases
or decreases in values are highlighted in green and red, respectively,
while if the metric outputs a similarity score it is colored in blue. The
current state of the graph is shown at the end of the provenance view.
The user can see the specific changes made by a protector in the graph
view by clicking on its corresponding provenance view. If a user is
dissatisfied with the current result, the most recent operation can be
cancelled from the provenance view. If a user is satisfied with the state
of the processed dataset, it can be exported into a documentary report,
containing the sanitized data and a post-processing report of changes
made.

(a) The node-link view (c) CDE(b) KDE

Fig. 8. Visualizing a graph with the graph view (a), KDE (b) and CDE (c).

6 CASE STUDIES

We present two case studies that demonstrate using GraphProtector.
The first compares protector schemes against each other, while the
second deals with setting processing priorities and utility preservation
metrics.

6.1 Email Communication Dataset
The email communication dataset in this first case study records 5,451
email contacts among 1,133 users in a university [2], and is shown as a
node-link diagram in Figure 9(a).

1129

4

Degree
Betweenness

Other nodes

0~0.5
0.8~1

Processing priority
H

igh
Low

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Degree

(0~0.5)70

60

50

40

30

20

10

0

Amount (4/608)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Betweenness

(0.8~1)0.25

0.20

0.15

0.10

0.05

0.00

Amount (4/227)

(a) The node-link graph

(b) The priority setting

Fig. 9. The email communication dataset. (a) In the graph view, the
locked nodes are highlighted in blue. (b) In the priority view, the nodes
that have “degree less than 50th percentile” and “betweenness greater
than 80th percentile” are selected by brushing.

To start, node degree and betweenness are chosen for specifying
priority. Figure 9(b) shows the distributions of these two metrics. By
brushing the two charts, we quickly find that only 4 nodes have a low
degree and a high betweenness (Figure 9)). We then add these nodes
to the processing priority list and lock them to ensure they are not
touched by protector operations. We also select the following metrics
for utility analysis: path length, joint degree, clustering coefficient and
betweenness.

After going to the interface for privacy preservation, we first create
a node degree protector with two schemes. For the first scheme (S1), to
simulate a purely automatic model, we set the global k (the kG value) to
5, as seen in Figure 10(a). For the second scheme (S2), we set kG = 3,
but then brushes to assign a localized kL = 7 value for nodes with lower
degree (below 30), as shown in Figure 10(b).

By comparing the utility changes required to execute each scheme
(shown on the bar charts), we notice that S1 requires not only adding
nearly double amount of edges, it also results in larger impact to the
other utility measures. We therefore choose to perform S2.

Next, we open a subgraph protector and check if there are privacy
issues caused by the following five types of classic subgraphs: complete,
circle, path, star and complete bipartite. We input several generalized
exemplar subgraphs for each type and set the tolerance to 0. As a
result, we find a subgraph, Figure 11(b), that matches a pre-defined
bipartite graph exemplar of size (6,3), as seen in Figure 11(a). To
achieve 2-anonymity for this case, we continue to search for matching
subgraphs with a relaxed tolerance value. When the tolerance is set
to 1/9, one additional matching subgraph, Figure 11(c), can be found.
Adding two edges to the matched subgraph, as presented as the dashed
lines in Figure 11(c), fixes the privacy leak.

6.2 Face-to-Face Contacts Dataset

For the second case study, we use a dataset describing face-to-face
contacts during an exhibition [1]. Edges represent conversations

200 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 25, NO. 1, JANUARY 2019

1 6 11 16 21 26 31 36 42 51

10

8

6

4

2

0

Degree

Node Amount

Degree

Node Amount

1 6 11 16 21 26 31 36 42 51

10

8

6

4

2

0

Added edge:
79 1.4%

Path length:
3.554 -1.5%

Joint degree:
(cosine) 0.914
Clustering coefficient:
0.225 2.2%
Betweenness:
(cosine) 0.958

Added edge:
40 0.7%

Path length:
3.579 -0.7%

Joint degree:
(cosine) 0.974
Clustering coefficient:
0.223 1.2%
Betweenness:
(cosine) 0.972

(a) The result of S1

(b) The result of S2

Fig. 10. Applying two schemes to the Email communication dataset. The
changes in utility metrics show that S1 yield nearly double loss than S2.

(a) One input exemplar

(a complete bi-partite (3,6))

(b) One detected subgraph

(with a tolerance of 0)

(c) One similar subgraph

(with a tolerance of 1/9)

Fig. 11. An input subgraph and two matching subgraphs in the email
communication dataset. Dashed lines represent the edges to be added
to achieve 2-anonymity.

between visitors that lasted longer than 20 seconds. This social network
has 410 nodes and 2,765 edges. To illustrate the importance of the
processing priority, in this case, we compare the changes in utility
metrics when using different priority schemes.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Percentile rank

50

40

30

20

10

0

Degree

Fig. 12. The line chart of node degree over percentile ranking.

Figure 12 indicates that the degree distribution of the dataset is
uniform except for nodes with the highest degree. To further study this
distribution, degree is selected as the utility evaluation metric. We then
create two priority schemes: (1) nodes with “degree less than the 2nd
percentile” are locked (S3), and (2) nodes with “degree more than the
98th percentile” are locked (S4). For each priority scheme, the same
privacy operations are applied:
Step 1: Using a degree protector, kG is set as 2.
Step 2: Using a hub fingerprint protector, we choose the four nodes
with the highest closeness as hub nodes and sets kG = 5.

After Step 1, the results produced from the two schemes differ
greatly, as shown in Figure 13(a). To perform privacy protection, S3
needs to add 3 edges while S4 adds 33 edges. This is because some of
the high-degree nodes have a unique degree. S3 allows GraphProtector
to add edges to those high-degree nodes, thus nodes with very high
degrees can be made to have the same degree with each other. In
contrast, S4 locks those high-degree nodes, meaning they cannot be
touched. As a result, other nodes must be used to resolve privacy issues,
which require the addition of more overall edges. As shown in the
second CDE of Figure 13(a), a large number of edges are added to two
nodes, in order to increase their degrees. This significantly affects the

degree distribution of those low-degree nodes, as shown in the second
bar chart of Figure 13(a).

The two schemes add similar numbers of edges in Step 2. However,
results of CDEs (Figure 13(b)) show that S4 adds 9 edges to the
same hub node. This modification would significantly undermine the
characteristics of the hub with high closeness.

(b) The results of Step 2

(a) The results of Step 1

S3:

S4:

S3:

S4:

Add 3 edges

Add 6 edges

Add 33 edges

Add 9 edges

1 6 11 16 21 26 31 47
Degree

30

20

10

0

Node Amount

1 6 11 16 21 26 31 47
Degree

Node Amount

30

20

10

0

Fig. 13. Two steps with two schemes applied to the Face-to-Face contact
dataset. In each row, changes in the number of structural features are
visualized on the left and the CDE with the new edges is displayed on
the right. Besides, edges indicating the feature transformations in Step 2
are highlighted in blue.

In this case, the effectiveness of processing priority is verified. To get
satisfactory results, it is necessary to start with an appropriate priority.
If users want to preserve the features consisting of a group of nodes,
the decisions need to be made carefully. The locking function not
only limits the modification of the node but also limits the means to
protect the node. As mentioned in Section 4.2, one of two privacy
preserving approaches must modify the node for anonymization. If a
locked node has privacy issue, automatic algorithms can only tackle
it with one approach, preventing the consideration of the utility. In
summary, locking nodes can only protect the features of nodes, but not
the features of the entire graph.

7 DISCUSSION

To solicit further feedback about our system, we interviewed domain
experts in data privacy about how tools like GraphProtector can
provide a detailed, guided approach for enabling privacy preservation.
In addition, we discuss additional considerations for tools like this:
steering sanitization pipelines, dealing with more complex network
datasets, and current system limitations.

7.1 Expert Reviews
During the design process, we kept in touch with the domain expert
who helped formalize a set of task requirements (Section 3). During
development, he continually provided suggestions for improving the

system’s functionality and design—for example, selecting nodes in the
priority view by ranking percentage is more common in their field of
research as opposed to specific attribute values.

After the system was fully implemented, we interviewed an
additional 4 experts who research privacy preservation and/or computer
security. Specifically, each was familiar with network privacy,
especially the use of algorithms to preserve privacy and sanitize
datasets. Normally this is done in a data-only context. Visualization
is not leveraged and the application of algorithms is done as a
“one-size-fits-all” approach; there is no customized sanitization for
dataset subsets. This means that the resultant utility of a dataset is a
major concern of theirs.

In discussing their normal preservation workflows, two main
problems were commonly encountered: (1) reviewing data in tabular
form is time-consuming and tedious, and (2) it is intractable to
formulate and compare detailed solutions to specific issues.

For each expert, we first introduced the GraphProtector system and
conducted a live, hands-on demo (taking approximately 30 minutes).
We then discussed the feasibility of our approach and asked how
feasible they considered tools like GraphProtector for their dataset
sanitization needs.

Being able to measure utility on-the-fly was immediately and widely
seen as a major benefit by several of the experts. Integrating multiple
techniques with custom schemes was also seen as beneficial. Though
not all experts used our specific protectors modules in their normal
workflows, they did not encounter difficulty in learning their design
and understanding their functionality.

A slight surprise to us was that some experts had trouble with
the provenance view. As one noted, his workflow did not involve
looking at historical snapshots or any exploratory, user-in-the-loop
components. Instead, his research heavily rely on developing advanced
algorithms that can automatically identify the optimal parameters
for privacy preservation. In contrast, another expert praised that
our system provided a “fine-grained data processing” pipeline. In
particular, this expert appreciated being able to locally set k-values as
well as processing priority—he saw this as an improvement for accurate
privacy preservation. For his research group, such a design exactly met
their requirements: seeking detailed sanitization solutions for network
datasets.

An additional expert commented that visualizing the data helps
interpretation, especially when presenting results for a processed
dataset. He expressed interest in using our design in the future when
presenting and publishing his results at conferences/journals or when
there is a need for explanation to shareholders and non-experts.

7.2 Detailed Guidance
By integrating automatic models, a visual analysis system allows
users to make adjustments in a steering fashion [29]. By using visual
analytics, we “uncover the black box” of the privacy models and meet
the needs for specific, customized privacy preservation settings.

In GraphProtector, users guide automated algorithms in two
aspects: terminals (privacy preserving goals) and directions (processing
priorities). For individual or localized issues, kL values can be set. This
is significant because requirement differences in data distribution and
practical applications make global settings hard to transfer between
data contexts. Automatic algorithms cannot easily fulfill this task in
multiple scenarios.

In addition, setting reasonable priority orderings can guide directions
for automatic algorithms and simplify the process of balancing privacy
and utility. It is verified that finding an optimal solution to privacy
preservation is NP-hard [4]. Based on the user interactions, the
exploration space is greatly limited in a way that focuses graph
sanitization according to GraphProtector’s workflow.

7.3 Defining Graph Utility
In Section 3, we defined utility as the similarity of structural properties
within a graph [27] . It is important to note that, similar to how
privacy algorithms depend on task and context, a definition of utility
also depends on task and context. As an example, instead of measuring

the amount that the graph’s structure has changed, utility could be
measured as how accurate (or precise) the answers to a set of rule-based
questions will be. After sanitization, if the number of correct responses
remains high, then utility could be considered successfully preserved.

For our purposes, our collaborating expert users were solely
interested in measuring utility via structural graph properties. Adding in
new metrics for evaluating utility in new scenarios is certainly possible,
but is likewise beyond this paper’s scope.

7.4 Scalability and Performance

Scalability is almost always a point of concern when designing
visual interfaces. Given limited screen space, how to best visualize
and facilitate the understanding of large and dense graph datasets
is a challenging and open research topic. A common practice for
addressing such an issue is to obtain different global and local statistical
features that describe the input graph in multiple aspects (such as
the functionality provided in our GraphProtector system). Another
possible approach is to first apply clustering or aggregation algorithms
to reveal the high-level structure of the graph and then allow the user
to acquire more detailed information about different parts of the graph
through exploration. Further detailed discussion along this direction,
however, is beyond the scope of this paper.

Computational efficiency is important for interactive system as
users typically expect a short response time. Unfortunately, querying
structures and statistical information in large graphs is time– and
memory–intensive. For instance, querying 20% of all nodes has a
time complexity of θ(N3.5) [9], even when specific information like
labels is known.

Pre–computation is a possible solution to improve the performance
of tools like GraphProtector. However, during sanitization the graph
is dynamically changing—making pre–computation infeasible. In
addition, some complicated structural features may be manually
identified based on the user’s current semantics. For instance, users
may need to specify subgraphs with arbitrary structures and fulfill
subgraph-matching tasks with respect to the background of attackers.

To improve efficiency, we can adjust optimization goals by the
setting kG and kL values and performing lazy searches. When querying
for a structure, the search stops once adequate quantified subgraphs
are found; users can be informed that this issue is not a risk. This
approach is feasible because small structures tend to frequently appear
in large-scale networks.

8 CONCLUSION

Privacy preservation is a challenging topic due to the conflict between
privacy and utility. Diverse features cause massive perspectives for
cracking the graph, which increases the difficulty of defense. We design
and implement a novel visual interface, called GraphProtector, to resist
potential attacks on structural features. After dividing questions into
issues, users can work on an issue each time and customize accurate
strategies. Feedback about the utility is presented to assist users in
comparing strategies.

We demonstrate the effectiveness of our approach through two
case studies with real-world datasets and expert interviews. With
the development of security technology, privacy protection may
face increasing multi-facet threats. Integrating more comprehensive
techniques can provide stronger defenses but can also lead to conflicts.
In the future, we plan to find a more effective way to control conicts
generated from hybrid approaches.

ACKNOWLEDGEMENTS

This research has been sponsored in part by National 973 Program of
China (2015CB352503), National Natural Science Foundation of China
(61772456, 61761136020), Alibaba-Zhejiang University Joint Institute
of Frontier Technologies. This research is also supported in part by
the U.S. National Science Foundation through grant IIS-1320229 and
IIS-1741536.

WANG ET AL.: GRAPHPROTECTOR: A VISUAL INTERFACE FOR EMPLOYING AND ASSESSING MULTIPLE... 201

1 6 11 16 21 26 31 36 42 51

10

8

6

4

2

0

Degree

Node Amount

Degree

Node Amount

1 6 11 16 21 26 31 36 42 51

10

8

6

4

2

0

Added edge:
79 1.4%

Path length:
3.554 -1.5%

Joint degree:
(cosine) 0.914
Clustering coefficient:
0.225 2.2%
Betweenness:
(cosine) 0.958

Added edge:
40 0.7%

Path length:
3.579 -0.7%

Joint degree:
(cosine) 0.974
Clustering coefficient:
0.223 1.2%
Betweenness:
(cosine) 0.972

(a) The result of S1

(b) The result of S2

Fig. 10. Applying two schemes to the Email communication dataset. The
changes in utility metrics show that S1 yield nearly double loss than S2.

(a) One input exemplar

(a complete bi-partite (3,6))

(b) One detected subgraph

(with a tolerance of 0)

(c) One similar subgraph

(with a tolerance of 1/9)

Fig. 11. An input subgraph and two matching subgraphs in the email
communication dataset. Dashed lines represent the edges to be added
to achieve 2-anonymity.

between visitors that lasted longer than 20 seconds. This social network
has 410 nodes and 2,765 edges. To illustrate the importance of the
processing priority, in this case, we compare the changes in utility
metrics when using different priority schemes.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Percentile rank

50

40

30

20

10

0

Degree

Fig. 12. The line chart of node degree over percentile ranking.

Figure 12 indicates that the degree distribution of the dataset is
uniform except for nodes with the highest degree. To further study this
distribution, degree is selected as the utility evaluation metric. We then
create two priority schemes: (1) nodes with “degree less than the 2nd
percentile” are locked (S3), and (2) nodes with “degree more than the
98th percentile” are locked (S4). For each priority scheme, the same
privacy operations are applied:
Step 1: Using a degree protector, kG is set as 2.
Step 2: Using a hub fingerprint protector, we choose the four nodes
with the highest closeness as hub nodes and sets kG = 5.

After Step 1, the results produced from the two schemes differ
greatly, as shown in Figure 13(a). To perform privacy protection, S3
needs to add 3 edges while S4 adds 33 edges. This is because some of
the high-degree nodes have a unique degree. S3 allows GraphProtector
to add edges to those high-degree nodes, thus nodes with very high
degrees can be made to have the same degree with each other. In
contrast, S4 locks those high-degree nodes, meaning they cannot be
touched. As a result, other nodes must be used to resolve privacy issues,
which require the addition of more overall edges. As shown in the
second CDE of Figure 13(a), a large number of edges are added to two
nodes, in order to increase their degrees. This significantly affects the

degree distribution of those low-degree nodes, as shown in the second
bar chart of Figure 13(a).

The two schemes add similar numbers of edges in Step 2. However,
results of CDEs (Figure 13(b)) show that S4 adds 9 edges to the
same hub node. This modification would significantly undermine the
characteristics of the hub with high closeness.

(b) The results of Step 2

(a) The results of Step 1

S3:

S4:

S3:

S4:

Add 3 edges

Add 6 edges

Add 33 edges

Add 9 edges

1 6 11 16 21 26 31 47
Degree

30

20

10

0

Node Amount

1 6 11 16 21 26 31 47
Degree

Node Amount

30

20

10

0

Fig. 13. Two steps with two schemes applied to the Face-to-Face contact
dataset. In each row, changes in the number of structural features are
visualized on the left and the CDE with the new edges is displayed on
the right. Besides, edges indicating the feature transformations in Step 2
are highlighted in blue.

In this case, the effectiveness of processing priority is verified. To get
satisfactory results, it is necessary to start with an appropriate priority.
If users want to preserve the features consisting of a group of nodes,
the decisions need to be made carefully. The locking function not
only limits the modification of the node but also limits the means to
protect the node. As mentioned in Section 4.2, one of two privacy
preserving approaches must modify the node for anonymization. If a
locked node has privacy issue, automatic algorithms can only tackle
it with one approach, preventing the consideration of the utility. In
summary, locking nodes can only protect the features of nodes, but not
the features of the entire graph.

7 DISCUSSION

To solicit further feedback about our system, we interviewed domain
experts in data privacy about how tools like GraphProtector can
provide a detailed, guided approach for enabling privacy preservation.
In addition, we discuss additional considerations for tools like this:
steering sanitization pipelines, dealing with more complex network
datasets, and current system limitations.

7.1 Expert Reviews
During the design process, we kept in touch with the domain expert
who helped formalize a set of task requirements (Section 3). During
development, he continually provided suggestions for improving the

system’s functionality and design—for example, selecting nodes in the
priority view by ranking percentage is more common in their field of
research as opposed to specific attribute values.

After the system was fully implemented, we interviewed an
additional 4 experts who research privacy preservation and/or computer
security. Specifically, each was familiar with network privacy,
especially the use of algorithms to preserve privacy and sanitize
datasets. Normally this is done in a data-only context. Visualization
is not leveraged and the application of algorithms is done as a
“one-size-fits-all” approach; there is no customized sanitization for
dataset subsets. This means that the resultant utility of a dataset is a
major concern of theirs.

In discussing their normal preservation workflows, two main
problems were commonly encountered: (1) reviewing data in tabular
form is time-consuming and tedious, and (2) it is intractable to
formulate and compare detailed solutions to specific issues.

For each expert, we first introduced the GraphProtector system and
conducted a live, hands-on demo (taking approximately 30 minutes).
We then discussed the feasibility of our approach and asked how
feasible they considered tools like GraphProtector for their dataset
sanitization needs.

Being able to measure utility on-the-fly was immediately and widely
seen as a major benefit by several of the experts. Integrating multiple
techniques with custom schemes was also seen as beneficial. Though
not all experts used our specific protectors modules in their normal
workflows, they did not encounter difficulty in learning their design
and understanding their functionality.

A slight surprise to us was that some experts had trouble with
the provenance view. As one noted, his workflow did not involve
looking at historical snapshots or any exploratory, user-in-the-loop
components. Instead, his research heavily rely on developing advanced
algorithms that can automatically identify the optimal parameters
for privacy preservation. In contrast, another expert praised that
our system provided a “fine-grained data processing” pipeline. In
particular, this expert appreciated being able to locally set k-values as
well as processing priority—he saw this as an improvement for accurate
privacy preservation. For his research group, such a design exactly met
their requirements: seeking detailed sanitization solutions for network
datasets.

An additional expert commented that visualizing the data helps
interpretation, especially when presenting results for a processed
dataset. He expressed interest in using our design in the future when
presenting and publishing his results at conferences/journals or when
there is a need for explanation to shareholders and non-experts.

7.2 Detailed Guidance
By integrating automatic models, a visual analysis system allows
users to make adjustments in a steering fashion [29]. By using visual
analytics, we “uncover the black box” of the privacy models and meet
the needs for specific, customized privacy preservation settings.

In GraphProtector, users guide automated algorithms in two
aspects: terminals (privacy preserving goals) and directions (processing
priorities). For individual or localized issues, kL values can be set. This
is significant because requirement differences in data distribution and
practical applications make global settings hard to transfer between
data contexts. Automatic algorithms cannot easily fulfill this task in
multiple scenarios.

In addition, setting reasonable priority orderings can guide directions
for automatic algorithms and simplify the process of balancing privacy
and utility. It is verified that finding an optimal solution to privacy
preservation is NP-hard [4]. Based on the user interactions, the
exploration space is greatly limited in a way that focuses graph
sanitization according to GraphProtector’s workflow.

7.3 Defining Graph Utility
In Section 3, we defined utility as the similarity of structural properties
within a graph [27] . It is important to note that, similar to how
privacy algorithms depend on task and context, a definition of utility
also depends on task and context. As an example, instead of measuring

the amount that the graph’s structure has changed, utility could be
measured as how accurate (or precise) the answers to a set of rule-based
questions will be. After sanitization, if the number of correct responses
remains high, then utility could be considered successfully preserved.

For our purposes, our collaborating expert users were solely
interested in measuring utility via structural graph properties. Adding in
new metrics for evaluating utility in new scenarios is certainly possible,
but is likewise beyond this paper’s scope.

7.4 Scalability and Performance

Scalability is almost always a point of concern when designing
visual interfaces. Given limited screen space, how to best visualize
and facilitate the understanding of large and dense graph datasets
is a challenging and open research topic. A common practice for
addressing such an issue is to obtain different global and local statistical
features that describe the input graph in multiple aspects (such as
the functionality provided in our GraphProtector system). Another
possible approach is to first apply clustering or aggregation algorithms
to reveal the high-level structure of the graph and then allow the user
to acquire more detailed information about different parts of the graph
through exploration. Further detailed discussion along this direction,
however, is beyond the scope of this paper.

Computational efficiency is important for interactive system as
users typically expect a short response time. Unfortunately, querying
structures and statistical information in large graphs is time– and
memory–intensive. For instance, querying 20% of all nodes has a
time complexity of θ(N3.5) [9], even when specific information like
labels is known.

Pre–computation is a possible solution to improve the performance
of tools like GraphProtector. However, during sanitization the graph
is dynamically changing—making pre–computation infeasible. In
addition, some complicated structural features may be manually
identified based on the user’s current semantics. For instance, users
may need to specify subgraphs with arbitrary structures and fulfill
subgraph-matching tasks with respect to the background of attackers.

To improve efficiency, we can adjust optimization goals by the
setting kG and kL values and performing lazy searches. When querying
for a structure, the search stops once adequate quantified subgraphs
are found; users can be informed that this issue is not a risk. This
approach is feasible because small structures tend to frequently appear
in large-scale networks.

8 CONCLUSION

Privacy preservation is a challenging topic due to the conflict between
privacy and utility. Diverse features cause massive perspectives for
cracking the graph, which increases the difficulty of defense. We design
and implement a novel visual interface, called GraphProtector, to resist
potential attacks on structural features. After dividing questions into
issues, users can work on an issue each time and customize accurate
strategies. Feedback about the utility is presented to assist users in
comparing strategies.

We demonstrate the effectiveness of our approach through two
case studies with real-world datasets and expert interviews. With
the development of security technology, privacy protection may
face increasing multi-facet threats. Integrating more comprehensive
techniques can provide stronger defenses but can also lead to conflicts.
In the future, we plan to find a more effective way to control conicts
generated from hybrid approaches.

ACKNOWLEDGEMENTS

This research has been sponsored in part by National 973 Program of
China (2015CB352503), National Natural Science Foundation of China
(61772456, 61761136020), Alibaba-Zhejiang University Joint Institute
of Frontier Technologies. This research is also supported in part by
the U.S. National Science Foundation through grant IIS-1320229 and
IIS-1741536.

202 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 25, NO. 1, JANUARY 2019

REFERENCES

[1] Infectious. http://konect.uni-koblenz.de/networks/

sociopatterns-infectious.
[2] U. rovira i virgili. http://konect.uni-koblenz.de/networks/

arenas-email.
[3] D. Archambault and N. Hurley. Visualization of trends in subscriber

attributes of communities on mobile telecommunications networks. Social
Network Analysis and Mining, 4(1):205, Jun 2014.

[4] M. Atallah, E. Bertino, A. Elmagarmid, M. Ibrahim, and V. Verykios.
Disclosure limitation of sensitive rules. In Workshop on Knowledge and
Data Engineering Exchange, pp. 45–52. IEEE, 1999.

[5] L. Backstrom, C. Dwork, and J. Kleinberg. Wherefore art thou R3579X?:
anonymized social networks, hidden patterns, and structural steganography.
In Proceedings of the 16th international conference on World Wide Web,
pp. 181–190. ACM, 2007.

[6] P. Bonacich. Power and centrality: A family of measures. American
journal of sociology, 92(5):1170–1182, 1987.

[7] M. Boss, H. Elsinger, M. Summer, and S. Thurner 4. Network topology
of the interbank market. Quantitative Finance, 4(6):677–684, 2004.

[8] R. S. Burt. Structural holes and good ideas. American journal of sociology,
110(2):349–399, 2004.

[9] V. Carletti, P. Foggia, A. Saggese, and M. Vento. Challenging the time
complexity of exact subgraph isomorphism for huge and dense graphs with
VF3. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2017.

[10] G. Chartrand, P. Erdos, and O. R. Oellermann. How to define an irregular
graph. College Math. J, 19(1):36–42, 1988.

[11] J. Cheng, A. W.-c. Fu, and J. Liu. K-isomorphism: privacy preserving
network publication against structural attacks. In Proceedings of the 2010
ACM SIGMOD International Conference on Management of data, pp.
459–470.

[12] J.-K. Chou, C. Bryan, and K.-L. Ma. Privacy preserving visualization for
social network data with ontology information. In Pacific Visualization
Symposium, pp. 11–20. IEEE, 2017.

[13] J.-K. Chou, Y. Wang, and K.-L. Ma. Privacy preserving event sequence
data visualization using a Sankey diagram-like representation. In
SIGGRAPH ASIA 2016 Symposium on Visualization, p. 1.

[14] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. A (sub) graph
isomorphism algorithm for matching large graphs. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 26(10):1367–1372, 2004.

[15] A. Dasgupta and R. Kosara. Adaptive privacy-preserving visualization
using parallel coordinates. IEEE Transactions on Visualization and
Computer Graphics, 17(12):2241–2248, 2011.

[16] W. Didimo, G. Liotta, F. Montecchiani, and P. Palladino. An advanced
network visualization system for financial crime detection. In IEEE Pacific
Visualization Symposium, pp. 203–210, 2011.

[17] S. P. Dwivedi and R. S. Singh. Error-tolerant graph matching using
homeomorphism. In International Conference on Advances in Computing,
Communications and Informatics, pp. 1762–1766, 2017.

[18] L. C. Freeman. A set of measures of centrality based on betweenness.
Sociometry, 40(1):35–41, 1977.

[19] L. C. Freeman. Centrality in social networks conceptual clarification.
Social networks, 1(3):215–239, 1978.

[20] A. Garas, P. Argyrakis, and S. Havlin. The structural role of weak and
strong links in a financial market network. The European Physical Journal
B, 63(2):265–271, 2008.

[21] A. Gibbons. Algorithmic graph theory. Cambridge University Press, 1985.
[22] M. Girvan and M. E. Newman. Community structure in social and

biological networks. Proceedings of the National Academy of Sciences,
99(12):7821–7826, 2002.

[23] M. Gjoka, B. Tillman, and A. Markopoulou. Construction of simple
graphs with a target joint degree matrix and beyond. In IEEE Conference
on Computer Communications, pp. 1553–1561, 2015.

[24] M. Hay, G. Miklau, D. Jensen, D. Towsley, and P. Weis. Resisting
structural re-identification in anonymized social networks. Proceedings of
the VLDB Endowment, 1(1):102–114, 2008.

[25] K. Henderson, B. Gallagher, T. Eliassi-Rad, H. Tong, S. Basu, L. Akoglu,
D. Koutra, C. Faloutsos, and L. Li. Rolx: structural role extraction
& mining in large graphs. In Proceedings of the 18th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp.
1231–1239, 2012.

[26] N.-C. Hsieh. An integrated data mining and behavioral scoring model

for analyzing bank customers. Expert Systems with Applications,
27(4):623–633, 2004.

[27] S. Ji, W. Li, P. Mittal, X. Hu, and R. A. Beyah. Secgraph: A uniform
and open-source evaluation system for graph data anonymization and
de-anonymization. In USENIX Security Symposium, pp. 303–318, 2015.

[28] S. Ji, W. Li, M. Srivatsa, J. S. He, and R. Beyah. Structure based data
de-anonymization of social networks and mobility traces. In International
Conference on Information Security, pp. 237–254. Springer, 2014.

[29] D. Keim, G. Andrienko, J.-D. Fekete, C. Görg, J. Kohlhammer, and
G. Melançon. Visual analytics: Definition, process, and challenges. In
A. Kerren, J. T. Stasko, J.-D. Fekete, and C. North, eds., Information
Visualization, pp. 154–175. Springer, 2008.

[30] N. Korula and S. Lattanzi. An efficient reconciliation algorithm for social
networks. Proceedings of the VLDB Endowment, 7(5):377–388, 2014.

[31] O. D. Lampe and H. Hauser. Curve density estimates. Computer Graphics
Forum, 30(3):633–642, 2011.

[32] J. Leskovec and J. J. Mcauley. Learning to discover social circles in ego
networks. In Advances in Neural Information Processing Systems, pp.
539–547, 2012.

[33] K. Liu and E. Terzi. Towards identity anonymization on graphs. In
Proceedings of the 2008 ACM SIGMOD International Conference on
Management of Data, pp. 93–106.

[34] S. Liu, W. Cui, Y. Wu, and M. Liu. A survey on information visualization:
recent advances and challenges. The Visual Computer, 30(12):1373–1393,
2014.

[35] Q. Luo and D. Zhong. Using social network analysis to explain
communication characteristics of travel-related electronic word-of-mouth
on social networking sites. Tourism Management, 46:274–282, 2015.

[36] K. K. Möller and A. Halinen. Business relationships and networks::
Managerial challenge of network era. Industrial Marketing Management,
28(5):413–427, 1999.

[37] A. Narayanan and V. Shmatikov. De-anonymizing social networks. In
Proceedings of the 30th IEEE Symposium on Security and Privacy, pp.
173–187, 2009.

[38] S. Nilizadeh, A. Kapadia, and Y.-Y. Ahn. Community-enhanced
de-anonymization of online social networks. In Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security, pp.
537–548.

[39] J. Oksanen, C. Bergman, J. Sainio, and J. Westerholm. Methods for
deriving and calibrating privacy-preserving heat maps from mobile sports
tracking application data. Journal of Transport Geography, 48:135–144,
2015.

[40] S. A. Rı́os, F. Aguilera, J. D. Nuñez-Gonzalez, and M. Graña. Semantically
enhanced network analysis for influencer identification in online social
networks. Neurocomputing, 2017.

[41] A. Sala, X. Zhao, C. Wilson, H. Zheng, and B. Y. Zhao. Sharing graphs
using differentially private graph models. In Proceedings of the 2011 ACM
SIGCOMM Conference on Internet Measurement Conference, pp. 81–98.

[42] T. Schank and D. Wagner. Approximating clustering coefficient and
transitivity. Journal of Graph Algorithms and Applications, 9(2):265–275,
2005.

[43] D. W. Scott. Multivariate Density Estimation: Theory, Practice, and
Visualization. John Wiley & Sons, 2015.

[44] G.-D. Sun, Y.-C. Wu, R.-H. Liang, and S.-X. Liu. A survey of visual
analytics techniques and applications: State-of-the-art research and future
challenges. Journal of Computer Science and Technology, 28(5):852–867,
2013.

[45] L. Sweeney. k-anonymity: A model for protecting privacy. International
Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,
10(05):557–570, 2002.

[46] B. Thompson and D. Yao. The union-split algorithm and cluster-based
anonymization of social networks. In Proceedings of the 4th International
Symposium on Information, Computer, and Communications Security, pp.
218–227. ACM, 2009.

[47] T. von Landesberger, A. Kuijper, T. Schreck, J. Kohlhammer, J. J. van
Wijk, J. Fekete, and D. W. Fellner. Visual analysis of large graphs:
State-of-the-art and future research challenges. Computer Graphics Forum,
30(6):1719–1749, 2011.

[48] X. Wang, J.-K. Chou, W. Chen, H. Guan, W. Chen, T. Lao, and K.-L.
Ma. A utility-aware visual approach for anonymizing multi-attribute
tabular data. IEEE Transactions on Visualization and Computer Graphics,
24(1):351–360, 2018.

[49] Y. Wang and X. Wu. Preserving differential privacy in degree-correlation

based graph generation. Transactions on data privacy, 6(2):127–145,
2013.

[50] X. Wu, X. Ying, K. Liu, and L. Chen. A survey of privacy-preservation
of graphs and social networks. In C. C. Aggarwal and H. Wang, eds.,
Managing and mining graph data, pp. 421–453. Springer US, Boston,
MA, 2010.

[51] Y. Wu, S. Liu, K. Yan, M. Liu, and F. Wu. Opinionflow: Visual analysis
of opinion diffusion on social media. IEEE Transactions on Visualization
and Computer Graphics, 20(12):1763–1772, 2014.

[52] M. Xiao, J. Wu, and L. Huang. Community-aware opportunistic
routing in mobile social networks. IEEE Transactions on Computers,
63(7):1682–1695, 2014.

[53] Q. Xiao, R. Chen, and K.-L. Tan. Differentially private network data
release via structural inference. In Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp.
911–920. ACM, 2014.

[54] J. Yang and J. Leskovec. Overlapping community detection at scale: a
nonnegative matrix factorization approach. In Proceedings of the sixth
ACM International Conference on Web Search and Data Mining, pp.
587–596, 2013.

[55] X. Ying and X. Wu. Randomizing social networks: a spectrum preserving
approach. In Proceedings of the 2008 SIAM International Conference on
Data Mining, pp. 739–750.

[56] B. Zhou and J. Pei. Preserving privacy in social networks against
neighborhood attacks. In Proceedings of the IEEE 24th International
Conference on Data Engineering, pp. 506–515, 2008.

[57] L. Zou, L. Chen, and M. T. Özsu. K-automorphism: A general framework
for privacy preserving network publication. Proceedings of the VLDB
Endowment, 2(1):946–957, 2009.

WANG ET AL.: GRAPHPROTECTOR: A VISUAL INTERFACE FOR EMPLOYING AND ASSESSING MULTIPLE... 203

REFERENCES

[1] Infectious. http://konect.uni-koblenz.de/networks/

sociopatterns-infectious.
[2] U. rovira i virgili. http://konect.uni-koblenz.de/networks/

arenas-email.
[3] D. Archambault and N. Hurley. Visualization of trends in subscriber

attributes of communities on mobile telecommunications networks. Social
Network Analysis and Mining, 4(1):205, Jun 2014.

[4] M. Atallah, E. Bertino, A. Elmagarmid, M. Ibrahim, and V. Verykios.
Disclosure limitation of sensitive rules. In Workshop on Knowledge and
Data Engineering Exchange, pp. 45–52. IEEE, 1999.

[5] L. Backstrom, C. Dwork, and J. Kleinberg. Wherefore art thou R3579X?:
anonymized social networks, hidden patterns, and structural steganography.
In Proceedings of the 16th international conference on World Wide Web,
pp. 181–190. ACM, 2007.

[6] P. Bonacich. Power and centrality: A family of measures. American
journal of sociology, 92(5):1170–1182, 1987.

[7] M. Boss, H. Elsinger, M. Summer, and S. Thurner 4. Network topology
of the interbank market. Quantitative Finance, 4(6):677–684, 2004.

[8] R. S. Burt. Structural holes and good ideas. American journal of sociology,
110(2):349–399, 2004.

[9] V. Carletti, P. Foggia, A. Saggese, and M. Vento. Challenging the time
complexity of exact subgraph isomorphism for huge and dense graphs with
VF3. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2017.

[10] G. Chartrand, P. Erdos, and O. R. Oellermann. How to define an irregular
graph. College Math. J, 19(1):36–42, 1988.

[11] J. Cheng, A. W.-c. Fu, and J. Liu. K-isomorphism: privacy preserving
network publication against structural attacks. In Proceedings of the 2010
ACM SIGMOD International Conference on Management of data, pp.
459–470.

[12] J.-K. Chou, C. Bryan, and K.-L. Ma. Privacy preserving visualization for
social network data with ontology information. In Pacific Visualization
Symposium, pp. 11–20. IEEE, 2017.

[13] J.-K. Chou, Y. Wang, and K.-L. Ma. Privacy preserving event sequence
data visualization using a Sankey diagram-like representation. In
SIGGRAPH ASIA 2016 Symposium on Visualization, p. 1.

[14] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. A (sub) graph
isomorphism algorithm for matching large graphs. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 26(10):1367–1372, 2004.

[15] A. Dasgupta and R. Kosara. Adaptive privacy-preserving visualization
using parallel coordinates. IEEE Transactions on Visualization and
Computer Graphics, 17(12):2241–2248, 2011.

[16] W. Didimo, G. Liotta, F. Montecchiani, and P. Palladino. An advanced
network visualization system for financial crime detection. In IEEE Pacific
Visualization Symposium, pp. 203–210, 2011.

[17] S. P. Dwivedi and R. S. Singh. Error-tolerant graph matching using
homeomorphism. In International Conference on Advances in Computing,
Communications and Informatics, pp. 1762–1766, 2017.

[18] L. C. Freeman. A set of measures of centrality based on betweenness.
Sociometry, 40(1):35–41, 1977.

[19] L. C. Freeman. Centrality in social networks conceptual clarification.
Social networks, 1(3):215–239, 1978.

[20] A. Garas, P. Argyrakis, and S. Havlin. The structural role of weak and
strong links in a financial market network. The European Physical Journal
B, 63(2):265–271, 2008.

[21] A. Gibbons. Algorithmic graph theory. Cambridge University Press, 1985.
[22] M. Girvan and M. E. Newman. Community structure in social and

biological networks. Proceedings of the National Academy of Sciences,
99(12):7821–7826, 2002.

[23] M. Gjoka, B. Tillman, and A. Markopoulou. Construction of simple
graphs with a target joint degree matrix and beyond. In IEEE Conference
on Computer Communications, pp. 1553–1561, 2015.

[24] M. Hay, G. Miklau, D. Jensen, D. Towsley, and P. Weis. Resisting
structural re-identification in anonymized social networks. Proceedings of
the VLDB Endowment, 1(1):102–114, 2008.

[25] K. Henderson, B. Gallagher, T. Eliassi-Rad, H. Tong, S. Basu, L. Akoglu,
D. Koutra, C. Faloutsos, and L. Li. Rolx: structural role extraction
& mining in large graphs. In Proceedings of the 18th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp.
1231–1239, 2012.

[26] N.-C. Hsieh. An integrated data mining and behavioral scoring model

for analyzing bank customers. Expert Systems with Applications,
27(4):623–633, 2004.

[27] S. Ji, W. Li, P. Mittal, X. Hu, and R. A. Beyah. Secgraph: A uniform
and open-source evaluation system for graph data anonymization and
de-anonymization. In USENIX Security Symposium, pp. 303–318, 2015.

[28] S. Ji, W. Li, M. Srivatsa, J. S. He, and R. Beyah. Structure based data
de-anonymization of social networks and mobility traces. In International
Conference on Information Security, pp. 237–254. Springer, 2014.

[29] D. Keim, G. Andrienko, J.-D. Fekete, C. Görg, J. Kohlhammer, and
G. Melançon. Visual analytics: Definition, process, and challenges. In
A. Kerren, J. T. Stasko, J.-D. Fekete, and C. North, eds., Information
Visualization, pp. 154–175. Springer, 2008.

[30] N. Korula and S. Lattanzi. An efficient reconciliation algorithm for social
networks. Proceedings of the VLDB Endowment, 7(5):377–388, 2014.

[31] O. D. Lampe and H. Hauser. Curve density estimates. Computer Graphics
Forum, 30(3):633–642, 2011.

[32] J. Leskovec and J. J. Mcauley. Learning to discover social circles in ego
networks. In Advances in Neural Information Processing Systems, pp.
539–547, 2012.

[33] K. Liu and E. Terzi. Towards identity anonymization on graphs. In
Proceedings of the 2008 ACM SIGMOD International Conference on
Management of Data, pp. 93–106.

[34] S. Liu, W. Cui, Y. Wu, and M. Liu. A survey on information visualization:
recent advances and challenges. The Visual Computer, 30(12):1373–1393,
2014.

[35] Q. Luo and D. Zhong. Using social network analysis to explain
communication characteristics of travel-related electronic word-of-mouth
on social networking sites. Tourism Management, 46:274–282, 2015.

[36] K. K. Möller and A. Halinen. Business relationships and networks::
Managerial challenge of network era. Industrial Marketing Management,
28(5):413–427, 1999.

[37] A. Narayanan and V. Shmatikov. De-anonymizing social networks. In
Proceedings of the 30th IEEE Symposium on Security and Privacy, pp.
173–187, 2009.

[38] S. Nilizadeh, A. Kapadia, and Y.-Y. Ahn. Community-enhanced
de-anonymization of online social networks. In Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security, pp.
537–548.

[39] J. Oksanen, C. Bergman, J. Sainio, and J. Westerholm. Methods for
deriving and calibrating privacy-preserving heat maps from mobile sports
tracking application data. Journal of Transport Geography, 48:135–144,
2015.

[40] S. A. Rı́os, F. Aguilera, J. D. Nuñez-Gonzalez, and M. Graña. Semantically
enhanced network analysis for influencer identification in online social
networks. Neurocomputing, 2017.

[41] A. Sala, X. Zhao, C. Wilson, H. Zheng, and B. Y. Zhao. Sharing graphs
using differentially private graph models. In Proceedings of the 2011 ACM
SIGCOMM Conference on Internet Measurement Conference, pp. 81–98.

[42] T. Schank and D. Wagner. Approximating clustering coefficient and
transitivity. Journal of Graph Algorithms and Applications, 9(2):265–275,
2005.

[43] D. W. Scott. Multivariate Density Estimation: Theory, Practice, and
Visualization. John Wiley & Sons, 2015.

[44] G.-D. Sun, Y.-C. Wu, R.-H. Liang, and S.-X. Liu. A survey of visual
analytics techniques and applications: State-of-the-art research and future
challenges. Journal of Computer Science and Technology, 28(5):852–867,
2013.

[45] L. Sweeney. k-anonymity: A model for protecting privacy. International
Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,
10(05):557–570, 2002.

[46] B. Thompson and D. Yao. The union-split algorithm and cluster-based
anonymization of social networks. In Proceedings of the 4th International
Symposium on Information, Computer, and Communications Security, pp.
218–227. ACM, 2009.

[47] T. von Landesberger, A. Kuijper, T. Schreck, J. Kohlhammer, J. J. van
Wijk, J. Fekete, and D. W. Fellner. Visual analysis of large graphs:
State-of-the-art and future research challenges. Computer Graphics Forum,
30(6):1719–1749, 2011.

[48] X. Wang, J.-K. Chou, W. Chen, H. Guan, W. Chen, T. Lao, and K.-L.
Ma. A utility-aware visual approach for anonymizing multi-attribute
tabular data. IEEE Transactions on Visualization and Computer Graphics,
24(1):351–360, 2018.

[49] Y. Wang and X. Wu. Preserving differential privacy in degree-correlation

based graph generation. Transactions on data privacy, 6(2):127–145,
2013.

[50] X. Wu, X. Ying, K. Liu, and L. Chen. A survey of privacy-preservation
of graphs and social networks. In C. C. Aggarwal and H. Wang, eds.,
Managing and mining graph data, pp. 421–453. Springer US, Boston,
MA, 2010.

[51] Y. Wu, S. Liu, K. Yan, M. Liu, and F. Wu. Opinionflow: Visual analysis
of opinion diffusion on social media. IEEE Transactions on Visualization
and Computer Graphics, 20(12):1763–1772, 2014.

[52] M. Xiao, J. Wu, and L. Huang. Community-aware opportunistic
routing in mobile social networks. IEEE Transactions on Computers,
63(7):1682–1695, 2014.

[53] Q. Xiao, R. Chen, and K.-L. Tan. Differentially private network data
release via structural inference. In Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp.
911–920. ACM, 2014.

[54] J. Yang and J. Leskovec. Overlapping community detection at scale: a
nonnegative matrix factorization approach. In Proceedings of the sixth
ACM International Conference on Web Search and Data Mining, pp.
587–596, 2013.

[55] X. Ying and X. Wu. Randomizing social networks: a spectrum preserving
approach. In Proceedings of the 2008 SIAM International Conference on
Data Mining, pp. 739–750.

[56] B. Zhou and J. Pei. Preserving privacy in social networks against
neighborhood attacks. In Proceedings of the IEEE 24th International
Conference on Data Engineering, pp. 506–515, 2008.

[57] L. Zou, L. Chen, and M. T. Özsu. K-automorphism: A general framework
for privacy preserving network publication. Proceedings of the VLDB
Endowment, 2(1):946–957, 2009.

