
Appendix I

Algorithm 1 A graph privacy-preserving algorithm achieving k-anonymity by adding edges. Based on the idea of
k-anonymity, we define the concept of the equivalence class of structural features. The equivalence class of
structural feature, such as degree and hub fingerprint, refers to a combination of elements with the same feature. The
elements can be nodes, node pairs and so on.

Input: A set comprising the equivalence classes of structural features: S; A set comprising the ∆k of equivalence
classes: ∆S; . ∆k is the difference between the target number of elements in the equivalence class and the actual
number of elements in the equivalence class.

Output: A set of edges to be added: edgeAddList;
1: function GRAPHPRIVACYPRESERVE(S,∆S)
2: totalNodeIn f o = []
3: for s in S do
4: (pullCost, pullNodeIn f o) = PULL(S,∆S,s) . Make the current equivalence class satisfy k-anonymity

by adding edges to the elements in other equivalence classes and transferring them into s
5: (pushCost, pushNodeIn f o) = PUSH(S,∆S,s) . Make the number of elements in the current equivalence

class to be 0, by adding edges to the elements in s and transferring them into other equivalence classes
6: end for
7: if pullCost = pushCost = ∞ then
8: return None
9: end if

10: if pullCost <= pushCost then
11: totalNodeIn f o += pullNodeIn f o
12: else
13: totalNodeIn f o += pushNodeIn f o
14: end if
15: edgeAddList = CONVERT(totalNodeIn f o)
16: return edgeAddList
17: end function
18:

19: function PULL(S,∆S,s)
20: ∆kc = ∆S[s], pullCount = 0, pullCost = 0, pullNodeIn f o = []
21: pullSet = GetPullSet(s) . Get a set of equivalence classes that can transfer elements to s
22: for s j in pullSet do
23: ∆k j = ∆S[s j]
24: if ∆k j < 0 then
25: (edgeCost, priorityCost,nodeIn f o) = TRANSFER(s j,s, isLocked = f alse) . Transfer adequate

unlocked idle elements in the s j to s and calculate the number of added edges, the cost of priority of nodes and
the node information that need to be added to the current solution

26: pullCost += Combine(edgeCost, priorityCost)
27: pullNodeIn f o += nodeIn f o
28: if size(nodeIn f o) <= ∆kc − pullCount then
29: pullCount += size(nodeIn f o)
30: else
31: pullCount = ∆kc

32: break
33: end if
34: end if
35: end for
36: if pullCount! = ∆kc then

1



37: pullCost = ∞

38: end if
39: return (pullCost, pullNodeIn f o)
40: end function
41:

42: function PUSH(S,∆S,s)
43: ∆kc = ∆S[s], pushCount = 0, pushCost = 0, pushNodeIn f o = []
44: pushSet = GetPushSet(s) . Get a set of equivalence classes that can transfer elements of s to
45: for s j in pushSet do
46: ∆k j = ∆S[s j]
47: if ∆k j > 0 then
48: if ∆k j >= pushCount then
49: trans f erCount = pushCount
50: else
51: trans f erCount = ∆ j
52: end if
53: [edgeCost, priorityCost,nodeIn f o] = Transfer(s, s j, trans f erCount) . Transfer trans f erCount

elements in the current equivalence class to s j

54: pushCost += Combine(edgeCost, priorityCost)
55: pushNodeIn f o += nodeIn f o
56: pushCount -= trans f erCount
57: if pushCount == 0 then
58: break
59: end if
60: end if
61: end for
62: if pushCount! = 0 then
63: pushCost = ∞

64: end if
65: return (pushCost, pushNodeIn f o)
66: end function

2


