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ConceptExplainer: Interactive Explanation for Deep Neural
Networks from a Concept Perspective

Jinbin Huang, Aditi Mishra, Bum-Chul Kwon, Chris Bryan

Fig. 1. CONCEPTEXPLAINER provides interactive concept-based explanations on deep neural networks (DNNs) at global/class/instance
levels via a coordinated visual analytics interface connected to a backend processing pipeline. A full description of the interface design
is given in Sect. 4.4; this image also shows actions taken during the usage scenario described in Sect. 5.2. i) Class Navigation Panel:
A, B, C; ii) Concept Navigation Panel: D, E, F; iii) Class-Concept Panel: G, H, I, J, K, L; iv) Header Bar Panel: M.

Abstract—Traditional deep learning interpretability methods which are suitable for non-expert users cannot explain network behaviors
at the global level and are inflexible at providing fine-grained explanations. As a solution, concept-based explanations are gaining
attention due to their human intuitiveness and their flexibility to describe both global and local model behaviors. Concepts are groups of
similarly meaningful pixels that express a notion, embedded within the network’s latent space and have primarily been hand-generated,
but have recently been discovered by automated approaches. Unfortunately, the magnitude and diversity of discovered concepts makes
it difficult for non-experts to navigate and make sense of the concept space, and lack of easy-to-use software also makes concept
explanations inaccessible to many non-expert users. Visual analytics can serve a valuable role in bridging these gaps by enabling
structured navigation and exploration of the concept space to provide concept-based insights of model behavior to users. To this end,
we design, develop, and validate CONCEPTEXPLAINER, a visual analytics system that enables non-expert users to interactively probe
and explore the concept space to explain model behavior at the instance/class/global level. The system was developed via iterative
prototyping to address a number of design challenges that non-experts face in interpreting the behavior of deep learning models. Via
a rigorous user study, we validate how CONCEPTEXPLAINER supports these challenges. Likewise, we conduct a series of usage
scenarios to demonstrate how the system supports the interactive analysis of model behavior across a variety of tasks and explanation
granularities, such as identifying concepts that are important to classification, identifying bias in training data, and understanding how
concepts can be shared across diverse and seemingly dissimilar classes.

Index Terms—Explainable AI, Concept Activation Vectors, Interactive Visual Analytics
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Deep learning has led to tremendous advances across a number of fields,
including natural language processing, speech recognition, medical
applications, computer vision, and autonomous vehicles [8]. Unfor-
tunately, the complexity and inherent opaqueness of neural networks
imposes significant difficulty in understanding the behavior and inner
workings of models [6]. As deep learning is increasingly employed
in today’s society, it is important that people (including those who are
non-experts in AI) are able to understand and interpret the predictions
made by AI models [45] — the explainable AI (XAI) subfield supports
the development of tools and techniques to support this process [46].
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Generally, interpretability of trained neural networks is achieved
either by (1) revealing the neural architecture, and how signals flow
through the pipeline, or (2) using explainable substitutions to approxi-
mate the neural network’s mental model on a task [15]. While the first
option is straightforward (i.e., making transparent the inner logic and
algorithmic functions of the model) it requires users that are equipped
with deep learning expertise, and is thus inappropriate as a paradigm for
non-experts [25]. In contrast, the latter option fits users with little deep
learning expertise, but it must be carefully employed as it comes with
inherent information loss and potentially false reflection [9]. One inter-
pretability approach that is suitable for non-experts is to demonstrate
how input perturbation affects model outputs. In image classification,
saliency and activation maps [11,35,37,38,51] measure the importance
of the input features (i.e., image pixels) when classifying an image. The
drawback is that these approaches only provide local or sample-level
explanations for individual images. Cross-grained insights which can
help users understand class or global-level model behaviors — e.g.,
measuring the influence that “ear” and “fur” have on predicting a clas-
sification of a “cat” — is not possible [22]. Such understanding can
be important, however, for non-expert users in the interpretability pro-
cess, as it allows them to compare their own mental models of how
classification should work to the neural network’s mental model [21].
To facilitate such explanations, concept-based methods have recently
been introduced by the AI community [14, 22, 41, 47]. For image
classification, a concept refers to a group of pixels in a sample that
represents an important part of the class object within the image [14].
To be considered as a concept for a class, the concept needs to be easily
understandable to human users, consistent within each concept but
separable from other concepts, and necessary for the prediction of the
class. Importantly, concepts can be used to generate explanations at
the different levels of granularity. At a high level, we can compute
the concepts that are influential to classes (e.g., “ear”, “fur”, “tail”
are likely important to the “cat” class). Locally (for an instance in a
class), we can measure how much each concept influences the correct
or incorrect classification of the class. When concepts and classes are
aggregated together, there is the potential to form a global perspective
of the neural network’s mental model, to understand the large-scale
behavior based on what the network has learned. Although concepts
are appropriate for use as an interpretability technique for non-experts,
there has been little broad application of this technique. This is likely
because of two shared complexities that make concept generation and
presentation a difficult exercise: (1) The “normal” procedure to create
concepts is by hand (i.e., manually). To automatically generate the
massive concept space that covers an entire neural network is a non-
trivial exercise. (2) Structuring, navigating, and probing such a concept
space in a way that supports different (global and local) explanation
granularities is likewise non-trivial. To address these two challenges,
we propose CONCEPTEXPLAINER. CONCEPTEXPLAINER consists
of two primary software components: (1) a backend pipeline interac-
tively (and automatically) generates and structures a concept space for
a neural network, and (2) a coordinated, visualization-driven frontend
lets users interactively explore and probe the concept space. CONCEP-
TEXPLAINER represents the first interactive visualization system
designed for non-expert users that supports concept-based expla-
nations of deep learning models at different levels of granularity.
At the global level, CONCEPTEXPLAINER can reveal which concepts
are broadly influencing the neural network’s decision making. At
the class level, users can visualize which concepts are influential for
that class, and can explore the overlaps of influential concepts which
are shared between classes. At the instance level, individual images
can be reviewed to see how present/non-present concepts affect the
model’s correct/incorrect predictions. In developing and evaluating
CONCEPTEXPLAINER, we make the following research contributions:
(1) Identifying challenges and goals. Based on an analysis of chal-
lenges in XAI for non-experts, we identify salient design challenges
and design goals which are important for concept-based explanation
for non-expert users, particularly in an interactive visualization context.
(2) A novel visual analytics tool for concept-based explanation. To
support the ideated challenges and goals, we design and implement

CONCEPTEXPLAINER, an interactive system that automatically gen-
erates a concept space for an image classification neural network, and
supports non-expert users to explore and probe concept-based expla-
nations at multiple levels of granularity. CONCEPTEXPLAINER is
designed based on an iterative prototyping process, formatively vali-
dated through multiple evaluations (usage scenarios and a user study),
and the codebase is open-sourced to promote adoption and replica-
tion. (3) Empirical findings and generalizable takeaways. Based on
the process of designing, implementing, and validating CONCEPTEX-
PLAINER, we discuss several lessons and takeaways on the topic of
how visualization-driven concept-based explanation can support XAI
tasks, such as identifying issues (or biases) in data samples, and how
tools like CONCEPTEXPLAINER can be extended in the future (such as
supporting expert users).

2 RELATED WORK

2.1 Deep Learning Interpretability using Concepts
There are two primary approaches for using concepts to improve deep
learning interpretability: (1) training inherently interpretable models
with concept-based constraints. (2) constructing post-hoc explanations
based on concepts.

Regarding the first approach, Koh et al. [23] proposed Concept
Bottleneck Model (CBM), which restricts neural networks to behave
in an auto-encoder manner where they first map inputs to human-
interpretable concepts and then predict based on those concepts. Chen
et al. [5] proposed Concept Whitening (CW) layer as a substitution for
the normalization layer (i.e., batch normalization) to achieve higher in-
terpretablity. While these methods employ concepts to offer embedded
interpretablity with no extra dependency, they do not provide ways to
gain insights into a trained model. Our work differs from this line of
research as we seek to interpret fixed models with no alteration.

For the second approach, TCAV [22] provides a means to computa-
tionally define a concept and calculate its class-specific influence on
model predictions (called the TCAV score). Building upon TCAV,
ACE [14] is a technique to automatically extract influential class-
specific concepts from a dataset. For a formal description of ACE
and TCAV, see Sect. 4.3, where we describe how both techniques are
incorporated into CONCEPTEXPLAINER’s backend to automatically
define and extract concepts.

Similarly, Ge at al. [13] proposed the Visual Reasoning Explanation
(VRX) framework that answers interpretability questions such as Why?
and Why not? [25, 26] from a concept perspective by extracting
and organizing class-specific concepts using trained structural concept
graphs (SCGs) based on pairwise concept relationships. Though VRX
provides insightful instance analysis, it requires training an SCG for
each class. This makes VRX difficult to implement within interactive
scenarios (i.e., as a part of a user interface) due to computational cost.

2.2 Visual Analytics in Concept-based Interpretability
A large amount of neural network interpretability research in the vi-
sualization community has utilized (non-concept-based) conventional
methods, including visualizing features, saliency and activation maps,
and visualizing the model neurons or architectures (e.g., [3, 31, 39]);
for more information, there are several recent surveys that discuss XAI
from a visualization perspective [18, 48, 49]. For research that em-
ploys visualization to support concept-based tasks, there are two recent
systems that are highly relevant to CONCEPTEXPLAINER:

CONCEPTEXTRACT [50] utilizes visualization within a human-in-
the-loop pipeline for concept extraction and fine-tuning. The system
generates initial concept segments using ACE; the user then interac-
tively refines the set of concept images. The user can also participate
in refining neural network-based binary concept classifiers by inter-
actively supplying labels. The intent of the system is to counter the
potential drawbacks of automatic concept extraction, such as human
incomprehensible patches, by incorporating human oversight and man-
ual labeling, with the ultimate goal of enabling efficient handcrafting
of high-quality concepts.

NEUROCARTOGRAPHY [32] aims to interactively reveal neuron-
concept relations by grouping a model’s similarly-activated neurons
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in the same latent layer by the same set of data instances. The corre-
sponding set of data instances is viewed as a set of concepts. Concepts
discovered in this way are layer-dependent. They evolve as layers go
deeper. The system is thus capable of letting users analyze concept
evolution in the context of the neural architecture, which is potentially
beneficial to expert users (e.g., model developers) in debugging.

While these two systems combine concept-based explanations and
visual analytics, both differ from CONCEPTEXPLAINER in two impor-
tant ways: (1) They are designed for expert users; in contrast, we focus
on AI non-experts. (2) They support different tasks (creating/refining
concepts, and revealing concept/neuron relations); our system is de-
signed to probe and explore concepts as a way to understand model
behavior. To the best of our knowledge, CONCEPTEXPLAINER is the
first interactive visual analytics system designed for non-experts that
employs concept as a means of explanation.

2.3 Deep Learning Interpretability for Non-Expert Users
The popularity of deep learning in today’s society has led to increased
demands for XAI techniques that are friendly to non-expert users [27].
Desiderata for this type of explanation includes faithfulness, consis-
tency with prior beliefs and generality [4]. Liao et al. [25] proposed
a set of design principles for end users, targeting explanation system
in form of a question bank, where global explanations for a model’s
decision making and local explanations for a particular decision on an
instance were ranked as top interests. Similarly, Hohman et al. [18],
in their categorization of end users (which include model develop-
ers/builders, model users, and non-experts) suggest that model users
who apply deep learning models to their domain tasks mostly need tools
that support exploration of model behaviors on local neighborhoods
and at global scale. Concept-based explanations are a good fit for these
needs, as they require minimal prior knowledge about neural networks
(e.g., it is not necessary to know technical concepts like backpropaga-
tion) while remaining intuitive and accessible. CONCEPTEXPLAINER
supports probing and exploring of concepts at multiple levels to support
interpretability tasks for non-experts.

3 DESIGN CHALLENGES AND GOALS

Similar to prior visualization design studies in XAI [18, 19, 36], we
identify a salient set of design challenges (C1–C4) which are important
for concept-based explanation for non-expert users, based on reviewing
of state-of-the-art publications that discuss challenges in XAI, concept-
based explanations, and AI explanations for non-experts (see Section 2).
We distill these into a set of four design goals (G1–G4), which we use
to guide CONCEPTEXPLAINER’s development.

Fig. 2. An example of how classes, concepts, and instances are re-
lated. Using our concept extraction and clustering pipeline (described in
Sect. 4.3, we show an example concept for each of the fire engine, white
wolf, and Samoyed classes.

3.1 Design Challenges
(C1) Extracting human-understandable concepts for classes.
There is increasing evidence that neural networks predict based on
a combination of the concepts present in instances. [10, 17, 20, 30, 44]
It is helpful for the user to understand neural network behavior by
demonstrating what concepts a neural network relies on for predictions
and the extent of concept influence on predictions. For example, when
the neural network classifies a tiger, is the “bushy background” concept
more influential or the “tiger stripe”? By extracting influential concepts

for each class, the user can intuitively understand how the network
understands each class and verify if it works in a sensible way. How-
ever, discovering concepts and measuring concept influences can be
difficult as noise is inevitable and there are different ways to measure
influence [50]. In our work, we adopt the ACE method for concept
extraction and TCAV method for measuring concept influence, as they
are the most widespread approaches for concept-based explanations.
We also propose a concept clustering process after concept discovery
to structure the concept space and facilitate concept navigation.

(C2) Multi-scale concept visualization for large datasets. Sys-
tem scalability has gained increasing attention in the visualization
community. The issue becomes salient when visual interfaces for XAI
are concerned because models to be explained are trained on large
datasets. Concept explanations also face this issue because the number
of concepts discovered grows linearly with the number of classes in
the dataset. To demonstrate the concept space and enable users to
gain insights from navigating the space, we need more than a naive
navigation mechanism which can cause the user to be lost in the deluge
of concept information without a clear navigational goal. Apart from
that, the data structure of concepts – quantitative influences and images
– requires specifically designed visualizations to present.

(C3) Revealing conceptual overlap between classes. The concep-
tual overlap (i.e., common influential features) between classes can
reveal to the user why one class might be easily misclassified as an-
other (e.g., Samoyeds classified as wolfs due to the influence of “snowy
background” concept). Among a group of classes, understanding what
concepts are shared (or not shared) can help discover features that
cause confusion [16] and/or serve as the unique “signature” of a class
in the neural network’s mental model. For example, Fig. 2, shows a
network has learned a “white fur” concept from both the white wolf
and Samoyed classes, which provides an idea about the commonalities
the network sees between these classes. In contrast, the lack of over-
lap between fire engine and white wolf also suggests that the network
discriminates animals from vehicles.

(C4) Balancing global explanations and local explanations.
Global explanations without much detail are generally easier to un-
derstand. However, since global explanations are a summary of local
behavior solely revealing global explanations might lead to unfaithful
interpretations. To ensure faithfulness of the explanations we need
to show information at both global and local levels and integrate the
analysis process at both levels in an organic workflow [33]. The user
benefits from having a holistic view of neural network behavior at
various levels (see Fig. 2) in a consistent concept-based framework
so they can (1) recognize contradictory explanations (2) verify their
hypothesis at different levels.

3.2 Design Goals
Based on the design challenges C1–C4, we identify four design goals
for the CONCEPTEXPLAINER system to support interactive concept-
based explanations of neural networks’ behavior for non-experts.
Roughly, these goals can be ordered in terms of their granularity: at the
global, class, and instance levels of analysis and explanation.

(G1) Navigating the global concept space. We aim to facilitate
navigation in the concept space of a large dataset (in our case, we use
ImageNet, which contains 1.2 M images for 1000 classes, see Sect. 4.2)
(C2). The methodology we use is transferable to other image datasets
as long as a trained deep learning model is available. To discover the
concept space while preventing noise (C1), we first use ACE algorithm
to extract influential concepts from the dataset. To facilitate structured
concept navigation we cluster the extracted concepts into multiple
concept clusters. The clustering of concepts makes the navigation
easier – the user can start their navigation by peeking at various concept
clusters to pick up the one they want to explore and get into the cluster
to see concepts inside. By gradually understanding the concept clusters
the user can understand the concept space. The transition from concept
cluster to individual concept reinforces an overview-first-detail-on-
demand workflow. To help the user keep track of their investigation
process in the concept space and understand the concept clusters by
labeling them (taking notes of them) in a user-driven way, annotation
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Fig. 3. The workflow for CONCEPTEXPLAINER. In the concept discovery stage, class-specific images are segmented, embedded in latent space and
clustered to form class-specific concepts. In the concept filtering stage, non-influential concepts are filtered based on t-test on their TCAV scores.
Concepts are then clustered in the concept clustering stage. We employ visual analytics in the frontend interface to let users explore and probe
concepts at the local, class, and global levels; users can also interactively update parameters on the backend stages.

functionality should also be available in the system.
(G2) Supporting intra-class concept analysis For a class, the dis-

covered, influential concepts can be represented as a collection of image
patches that have similar high dimensional activations. These influen-
tial concepts intuitively reveal how the model understands a class. The
system needs to present these concepts such that the user can under-
stand what they are and the extent of their influence (C2, C3). Users
can even inspect the most influential concepts to see if the network has
learned sensible relations (e.g., noisy concepts should be less influential
than relevant concepts).

(G3) Supporting inter-class concept analysis. Understanding
conceptual commonalities between classes can help users to under-
stand how the network perceives similar/different classes and pinpoint
concept-based root causes for misclassifications. To this end, we seek
to demonstrate the links between similar concepts of different classes
(C3). It is necessary that inter-class concept analysis go beyond “com-
paring two classes,” as several classes may share commonalities of
interest and the user may want to understand how the neural network
considers them comprehensively.

(G4) Supporting instance analysis. Only explaining neural net-
work behavior from a global or class level might lead the user to
overlook important details, resulting in misinterpretations of how the
network should work. To enable detailed inspection, while not over-
whelming by revealing too many details, concept influences can be
measured for individual instances. Such options keep the analytical
framework unified: the user does not need other tools for instance ex-
planations/analysis. In addition, instance-level analysis also helps users
investigate edge cases (“Why did the model misclassify this image?”)
by listing influential concepts of the image.

4 SYSTEM DESIGN

Based on the design goals G1–G4, we develop CONCEPTEXPLAINER,
an interactive system that provides non-expert users with the ability to
probe and analyze concept-based explanations at both the global and
local levels. As shown in Fig. 3, the system consists of an integrated
backend and frontend. In the backend, we design a processing pipeline
that leverages concept-extraction methods (specifically, TCAV and
ACE) to automatically extract and organize concepts for a given image
dataset. Extracted concepts are organized into meaningful clusters to
facilitate interactive concept navigation and concept overlap inspection.
The frontend interface (Fig. 1) consists of four coordinated panels: (1)
the header (M) contains controls widgets, including for manipulating
the backend processing (setting parameters for the TCAV, ACE, and
clustering methods), (2) the left panel (A – C) provides overview, navi-
gation and analysis for classes, (3) the right panel (D – F) provides a
clutter-free locality-retaining overview for the concept space and nav-
igation mechanisms reinforcing the overview-first-detail-on-demand
mantra. (4) the central panel (G – L) provides support for class/instance
level analysis – an overview of class-specific concepts and inter-class
concept links combined with a detailed concept inspection view account
for both class and instance level model behaviors.

4.1 Iterative Prototyping Process
To facilitate our design process, we employed an iterative prototyp-
ing methodology [29]. Over an approximately six months period, we
sketched and prototyped a number of user interface and interaction
designs. Designs were holistically reviewed and discussed by the
project team, with additional feedback solicited from XAI researchers
who work on interpretability techniques for non-expert users. Designs
deemed suboptimal were either discarded or refactored (Fig. ?? in the
Appendix shows two examples of “old” interfaces), while well-received
designs were iteratively refined to develop the current system version.
As an example of this process’ impact, we adopted a three-panel layout
in the interface (as shown in Fig. 1 and described in Sect. 4.4). The left
class navigation panel supports class-based analysis and navigation;
in parallel, the right concept-navigation panel supports concept-based
analysis and navigation. Within each of these panels, users can tran-
sit fluently from global perspectives of the model (i.e., visualizing
all classes/concepts together) down to analyzing individual instances.
Classes, concepts, and instances are synthesized together in the center
class-concept panel.

4.2 Dataset and Model
To demonstrate a real-world application throughout the rest of this
paper, we use the ImageNet dataset [7], which is a well-known image
dataset consisting of 1.2M training instances. As a model, we employ
GoogleNet [40], a convolutional neural network consisting of 22 layers.
GoogleNet provides a pre-trained model for ImageNet, which classifies
images into 1,000 object categories. Thus, our task is to use CON-
CEPTEXPLAINER to explain GoogleNet’s behavior in the context of
instances and classes for the ImageNet dataset.

4.3 Backend: Concept Extraction and Clustering
We use a combination of TCAV [22] and ACE [14] as the methodologi-
cal backbone for concept-based explanation. Combining these methods
together lets us automatically derive influential concepts for each class
predicted by GoogleNet and the extent of the class’ influences. By
subsequently clustering the ensemble of derived concepts, we impose a
human-understandable structure on the concepts that approximates the
model’s mental model in classification.

4.3.1 TCAV
TCAV, or testing with concept activation vectors, is a concept-based
explanation method that measures the importance of human understand-
able concepts to the neural network’s inference — e.g., how much a
“stripe” concept affects a classifier when predicting a zebra image. The
TCAV approach views concepts as a set of images of similar traits. A
set of images without these traits forms a set of counterexamples (i.e,.
non-concept examples).

TCAV defines a concept activation vector, or CAV, as the normal to
the hyperplane that linearly separates high-dimensional representations
of concept examples from that of non-concept examples. To measure
the influence of a concept to an instance’s prediction, TCAV computes
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pixel gradients of the instance at a target layer and compares its di-
rection with the CAV’s (both are in the same latent space) by taking
inner product of the two. If the gradient vector lines up with the CAV
(indicated by a positive inner product) it means the concept is positively
influencing the prediction (“stripe” makes an instance more likely to
be a zebra). Conversely, if the two vectors part (indicated by negative
inner product), the concept negatively influences the prediction.

The TCAV score, which measures conceptual influence, is defined
as: TCAVQC,K,L =

|{x∈Xk :SC,k,l(x)>0}|
|Xk | where the fraction of k-class inputs

whose l-layer activation vector was positively influenced by concept
C. SC,k,l(x), is the aforementioned innerproduct of pixel gradients and
CAVs. To prevent meaningless concepts (concepts with influence∼0.5),
multiple CAVs can be trained using the same set of concept examples
against various sets of counter examples. A meaningful concept should
lead to TCAV scores that rejects the hypothesis of a 0.5 TCAV score
with statistical significance (we use a threshold of p > 0.01).

In our system, we train 20 CAVs for each concept on concept exam-
ples (this parameter can be edited via CONCEPTEXPLAINER’s frontend)
and randomly formed counter examples after it is generated using ACE
method. TCAV scores are computed for each CAV and averaged.

4.3.2 ACE

TCAV provides a mechanism for measuring the influence of human-
understandable concepts on the neural network for a specific class, but
in the base TCAV approach, forming a set of examples for a concept is
a manual process. To automate the process of concept generation and
extraction, Ghorbani et al. [14] proposed ACE, or automatic concept-
based explanations.

ACE extracts a set of concepts for each class the model predicts
on, by segmenting the images of the class and grouping segments that
form clusters in the high-dimensional space of specific latent layer; the
TCAV procedure can be followed to filter out meaningless collections.
This combined TCAV-plus-ACE process makes efficient and automated
concept generation tractable. In our system, we default to sampling
50 images for each class, and segment them using SLIC [1] with three
resolutions (15, 50, and 80 segments) per image. The segments are
embedded in the network’s “mixed4c” layer. K-means clustering is then
performed to cluster their latent representations into 10 concepts (high-
dimensional clusters), though each of these parameters is controllable
from CONCEPTEXPLAINER’s frontend.

4.3.3 Concept Clustering

Running ACE will extract a large ensemble of concepts. For example,
we extracted 1,211 concepts from 143 randomly selected classes in
ImageNet using the default parameters mentioned above. This concept
space is unorganized (i.e., there’s no ranking or structure imposed on
them), which makes it difficult to review, explore, and compare them.

An additional consideration (or complexity) is that concepts dis-
covered in different classes might be semantically similar (e.g., “snow
background” in husky and “snowy background” in wolf); such similar-
ity needs to be demonstrated because it is useful for understanding the
model from a concept perspective.

To enable structured and guided navigation within this the concepts
space (G1), we apply clustering to the extracted concepts. The intent is
to group semantically similar concepts into the same cluster, which will
let us leverage cluster identity as a means to demonstrate conceptual
overlap across classes, and to form a meaningful navigation structure
that the user can rely on to probe and explore the concept space.

The similarity between two concepts is quantified by their cluster
identity (if two concepts come from the same cluster their similarity
is 1, otherwise 0). In the frontend, users can choose between k-means
and agglomerative clustering, and select associated cluster parameters.
Based on feedback from our user study evaluation (see Sect. 6), this
provides good flexibility by allowing users to explore different cluster-
ing levels and granularities, though the system is extensible to other
clustering methods (i.e., as future work) and heuristics. In particular,
clustering itself can benefit from the use of XAI techniques, though
exploring such activities is beyond the scope of the current paper.

4.4 Frontend: CONCEPTEXPLAINER Interface
Fig. 1 shows the CONCEPTEXPLAINER interface, which consists of
four primary panels and several coordinated views (A–N).

4.4.1 Class Navigation Panel
The leftmost class navigation panel provides three visualizations (A–
C) to facilitate navigation and selection of classes of interest for concept
exploration. This panel primarily supports exploring the model from a
class-based perspective, and allows users to analyze the concept space
at a global level (G1), comparatively analyze classes (G2 and G3), and
inspect specific instances within a class (G4).

(A) The class performance view summarizes model performance.
Users can begin exploration by brushing histogram bins to filter out
undesired classes (e.g., show only low performance classes).

(B) Such brushing updates the class navigation view. This view
provides a global perspective of all classes using t-SNE [43], which
maps a high dimensional representation of classes (computed as the
average of latent vectors of all images of the same class) into a two
dimensional embedding. To prevent overplotting, we aggregate classes
into “clique” circles, sized by the number of total classes and colored
based on average accuracy of classes in the clique. Hovering on a circle
displays a tooltip (see (O)) showing individual classes belonging to the
clique with with a representative image per class. Users can select a
class of interest for subsequent analysis.

(C) Selected classes are displayed in the class confusion matrix
view. The confusion matrix supports inter-class and intra-class analysis
by summarizing the classification performance against ground truth
labels across the selected classes. Clicking on a cell shows a list of
images that belong to the corresponding category of the cell below the
confusion matrix. For example, Fig. 1(C) shows the 11 instances of
tiger cat which were misclassified as tiger.

Hovering over an instance shows the concepts that affect the in-
stance’s prediction. For example, in Fig. 5(J) (part of usage scenario
#3), a police van image was misclassified as ambulance. Hovering on
the instance shows how influential the concepts of these two classes
affect the prediction. In the usage scenario, the ambulance concepts
have slightly higher, influence scores than police van concepts, which
explains why the model misclassified the image as ambulance.

4.4.2 Concept Navigation Panel
The concept navigation panel on the right side of the interface con-
tains three views that facilitate navigation of the concept space in a
structured way (G1) while providing context during class-concept and
instance analysis (G2–G4).

(D) The entire concept space is displayed in a hexagon plot in the
concept navigation view. The design of this view underwent multi-
ple iterations during the iterative prototyping process. For example,
Fig. ??(top) in the Appendix shows an early visualization design of the
concept space, based on dimensionality reduction where each concept
was plotted as a point. This design had several limitations, including
overplotting and difficulty in distinguishing and selecting individual
concept clusters.

The hexagon design avoids these issues. Instead of plotting a point
cloud, we use the IsoMatch method [12] to plot organize concepts
within a hexagonal grid layout like a heatmap. Each concept is visual-
ized as a hex tile, assigned to a unique location such that (a) clutter and
overlap is avoided, (b) cluster boundaries are easily demarcated using
dark borders, (c) concepts are evenly distributed across the panel’s
available space, and (d) concept clusters are easily selectable.

(E) Clicking on a cluster loads it into the concept cluster detail
view. This chart summarizes the concepts belonging to a concept
cluster. Concepts are ordered along the x-axis by their influence scores,
which are mapped to the y-axis. Circles are colored using a diverging
blue-to-red color scale based on positive (above 0.5) or negative (less
than 0.5) influence score; the influence score mid-point (0.5) is shown
as a dotted line, and the average influence score over all concepts in the
cluster is shown as a solid horizontal line.

(F) Hovering or clicking on a concept loads it into the individual
concept view, which loads all image patches for that concept. By
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skimming through these, the user can quickly gain a semantic under-
standing of what that concept is. Skimming multiple concepts in this
way can help show why they belong to the same concept cluster. As an
additional feature for this view, we provide users with an annotation
feature to input descriptive information about a concept cluster. This
information is saved for future reference.

4.4.3 Class-Concept Panel
The central class-concept panel synthesizes information from the left
(class-focused) and right (concept-focused) panels, supporting inter-
pretation to the underlying model’s behavior on the given data at inter-
class, intra-class and instance levels (G2–G4). It consists of three views,
organized around a workflow going from inter-class comparison, to
intra-class comparison, to instance analysis.

(G) The concept card view provides an overview of selected classes
and concepts (e.g., selecting a set of classes from the class navigation
view). Each class is represented by a card, with the class name at top.
Below each class title, a histogram shows the distribution of influence
scores for the concepts in that class. If the histogram skews to one
side, it means the concepts are likewise skewed either positively or
negatively influential. In contrast, a normal distribution indicates the
majority of concepts in that class are closer to neutral (i.e., close to the
0.5 influence mid-point).

Below the histograms, a detailed dot plot shows individual con-
cepts as circles. Circles are organized into rows corresponding to their
concept clusters (labeled at left, e.g., the first row “CC9” stands for
“concept cluster #9”). Circles located on the same row belong to the
same concept cluster (i.e., they would be in the same cluster in the
concept navigation view in (D)), even when they are distributed among
different classes. The left-to-right position of a circle (along with its
corresponding red-to-blue color scale) within its class card is based on
its influence score along the negative-to-neutral-to-positive scale.

Concepts in the same row are also linked via horizontal lines to em-
phasize their concept cluster grouping (supporting inter-class analysis,
G3). This design is inspired by Lex et al.’s work [24]. Clicking or
hovering on these links highlights the corresponding concept cluster in
the hexagon plot in (D), and loads the specific concept cluster in the
detail view in (E).

To support additional concept analysis, we adopted the idea of pe-
riphery plots [28] to supply condensed insights to the left and right of
the class cards. (I) The box plots to the left summarize the influence
scores for the concepts for each row (i.e., for each concept cluster). (H)
To the right, the bar chart shows the number of concepts belonging to
that concept cluster, based on the current selection of classes. A higher
frequency number indicates that this concept cluster is likely a common
characteristic of these classes in the model’s mental map.

(J) Clicking the title bar of a class card loads the class-specific con-
cept view. This view facilitate intra-class concept inspection (G2).
Each row shows one concept, sorted based on decreasing influence
score (i.e., the top concept rows are more positively influential to the
prediction of the class). Users can review and verify if the model is
making inferences about a class based on a set of reasonable concepts.
For example, if the user sees a concept relating to an image’s back-
ground, as opposed to important semantic features (e.g., for a zebra,
“grassland” as opposed to “stripes”), it may indicate that the neural
network is assigning too much weight to the background of the im-
age while ignoring foreground information that might reasonably be
important (at least from a human’s perspective).

In each row, we present five representative image patches of the
corresponding concept so that the user can form a rough idea of what
the concept is about. Additional samples can be loaded by clicking the
“+” icons beside each label.

(K) To the right of the class-specific concept view, the instance
influence matrix visualizes local explanations about the models behav-
ior for individual instances. This heatmap plots each row as a concept
(aligned with the concepts to the left in (J)), where each column indi-
cates an image sample in the dataset. Thus, each cell indicates, for a
particular instance, how influential that concept was in its prediction,
colored using the same red-to-blue color scale from previous views.

Above each column, a check mark or X indicates if the prediction was
correct.

Instances are sorted based on their classification accuracy and con-
fidence (i.e., the left-most column is the correctly classified instance
with the highest confidence and the right-most column the misclassified
instance with the highest confidence). In Fig. 1, the user has scrolled
all the way to right, showing incorrect predictions with the highest
confidence.

(L) Clicking on a column loads its instance into the instance view.
This card provides details about the instance (G4), including its image
with concept patches that can be toggled on as overlaid semi-transparent
boundaries, its ground truth labeling, and the model’s prediction and
confidence. At the bottom of the card, a lollipop chart shows the
concept influences specific to that particular instance.

4.4.4 Header Bar Panel
(M) The header bar provides control widgets allowing users to update
parameters and re-run the backend pipeline. The menu includes select-
ing a dataset and model, selecting the model layers where the concepts
are extracted, setting TCAV and ACE parameters, specifying the con-
cept clustering methods and number of clusters (i.e., the parameter k in
k-means). The number of clusters is set by default to the optimal value
based on the silhouette score [34]. Users can hover on other numbers
of clusters to see their scores as shown in (M).

5 USAGE SCENARIOS

To help demonstrate how CONCEPTEXPLAINER supports concept-
based explanation to learn about the model behavior, we present three
usage scenarios exploring GoogleNet on the ImageNet dataset. Each
focuses on a different type of exploration and analysis: (#1) for individ-
ual classes and their instances, (#2) comparing the concepts between
two classes, and (#3) understanding concept commonalities across
many classes. We tell these stories from the perspective of Michael, a
non-expert in AI.

Fig. 4. Usage scenario #1 represents analysis of the zebra and lionfish
classes. A full-size figure is available in the Appendix.

5.1 Usage Scenario #1: Verifying GoogleNet’s knowledge
about individual classes and samples

As Fig. 4(A) shows, Michael begins by reviewing clusters in the concept
navigation view, focusing on clusters with darker colors (i.e, contain-
ing more influential concepts). Loading Cluster #13 in the concept
cluster detail view, he realizes the two most-influential concepts (from
the zebra and lionfish classes) look like stripes. He loads the zebra
and lionfish classes into the central class-specific concepts panel for
subsequent investigation.

In the class-specific concepts panel, Michael sees several cross-class
links between the lionfish and zebra classes, which further confirms
that conceptual overlap exists (Fig. 4(B)). Reviewing these, he sees that
the shared concepts primarily relate to stripe patterns. As both zebras
and lionfish have prominent stripe patterns, GoogleNet has learned (or
formed a mental model) that stripe patterns are a way to recognize both
zebras and lionfish.
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Michael next inspects the individual concepts of the zebra and lion-
fish classes (Fig. 4(C)). For the zebra class, the three most positively
influential concepts pertain to stripe patterns. As influence decreases,
the concepts become more associated with noise and background fea-
tures, such as representing desert or grassland. In this case, GoogleNet
is aligning with Michael’s mental model, as background information is
largely irrelevant to classifying these images as zebras.

Reviewing individual samples using the influence instance matrix
and the instance view, Michael notices a misclassified image of zebra
predicted as the llama (Fig. 4(D)). The zebras in this image are very
small, and “background concepts” (such as grasses and sky) are the
main concepts present. In other words, the model predicted using
less-influential concepts that were present, as stripe concepts were not
found. This happens several times in instances predicted as zebra or
lionfish, and the model regularly predicts wrongly in such cases.

Fig. 5. Usage scenario #3 represents analysis on a group of classes. A
full-size figure is available in the Appendix.

5.2 Usage Scenario #2: Spotting unreasonable concepts
and data quality issues

Using the class navigation view, Michael looks at other classes similar
to zebra. Hovering on the circle containing the zebra class displays a
tooltip, which indicates the tiger class (another animal with prominent
stripes) is also contained in this clique (Fig 1(O)). An adjacent clique
in this view is colored in red (indicating below-average classification
accuracy); the tooltip shows that this clique contains a tiger cat and
tabby class. Intrigued, he selects the tiger, tiger cat, and tabby classes.

The class confusion matrix (Fig. 1(C)) view shows many misclassifi-
cations between tiger cat and tiger; for example, there are 11 images
of tiger cat (ground truth) that were predicted as tiger by GoogleNet.
Selecting this cell loads these images; to Michael’s eyes, they all indeed
appear to be tigers, not tiger cats. Already, Michael can see that there
is a data labeling issue in ImageNet: instances that should have been
labeled as tigers were wrongly labeled as tiger cats.

Most tiger cat concepts appear to have negative influences in con-
cept card view (Fig. 1(G)). Michael reviews these in the class-specific
concept view (Fig. 1(J)).

He quickly scans through the concepts, and unsurprisingly, many of
them seemed to be random or incomprehensible patches that do not
form a collective theme. In other words, GoogleNet did not form a
sensible mental model about tiger cat. Interestingly, the most negatively
influential concept at the bottom row presents a “tiger stripe” pattern,
which helps explain why there are so many tiger cats misclassified as
tigers.

Because of this, Michael decides to review tiger cat instances that
contain the “stripe” concept using the instance influence matrix and the
instance view (Fig. 1(N)). Reviewing misclassified instances, he again
can see that there are several images labeled as tiger cat but actually
including tigers in them. Overall, Michael observes that mislabeled
instances tend to include small objects of tigers. This explains why the
tiger stripe was not positively influential – because it was not easily
detected due to its size.

5.3 Usage Scenario #3: Understanding the neural net-
work’s knowledge on a group of classes

In Fig. 5(A), Michael investigates GoogleNet’s global mental model
by reviewing the class navigation view. He notices a big circle in the
bottom right corner of the visualization, indicating a clique containing
many classes. The tooltip shows that the classes (7 in total) are all
vehicles. He selects all of them. Reviewing these in the class-specific
concepts view, he sees (as expected) many cross-class links in the
class-specific concepts panel which connect influential concepts for
the various vehicles. This means the neural network has likely learned
common features across different cars.

Michael scans through the horizontal links across classes one by
one. Fig. 5(B) and (C) show that the highest-ranked concept cluster
(labeled CC14, for concept cluster #14) contains window-like patches
in the beach wagon class, so an important “vehicle commonality” the
network has likely learned is “car windows.” This hypothesis is con-
firmed by reviewing across other concepts in this concept cluster (e.g.,
Fig. 5 (C) also contains window patches from the police van class).
The next set of links in Fig. 5 (D) and (E) tend to show “car side”
concepts, which are relevant features regardless of the vehicle type
(in this case, between jeep and cab. Further investigation reveals both
“urban background” in Fig. 5 (F) and (G), and “wheel” as influential
concepts in Fig. 5 (H) and (I). Both concepts make sense at a high
level (“Cars have wheels and car pictures are usually taken in urban
environments.”), but interestingly, the jeep class does not consider the
“urban background” concept as influential. Reviewing jeep instances
reveals why: many jeep pictures are taken with the background in
nature (desert or woodland settings); he cannot find jeep pictures taken
in urban settings.

While many of the concepts make sense upon review, Michael is
surprised to realize that GoogleNet considers “windows” and “car sides”
as the most salient discriminators or influencers for predicting cars,
while other features like “wheels” or “headlights” are not chosen.

6 USER STUDY

To evaluate CONCEPTEXPLAINER, we designed a user study to answer
two primary questions relating to design goals (“How well does the sys-
tem support the design goals (G1–G4)?”) and overall usability (“What
is the overall usability of the system?”). Our user study consisted of two
stages: i) a task stage where participants completed three representative
analysis tasks in line with the four design goals listed in Sect. 3.2; and
ii) a freeform analysis stage where participants freely probed model
behavior using the interface. We recruited ten participants who were
non-experts in deep learning, had not heard of concept-based explana-
tions, and had not used ImageNet and GoogleNet before. We collected
both quantitative and qualitative data, which allowed us to robustly
evaluate both the ability of CONCEPTEXPLAINER to support the design
goals G1–G4, and also to understand the system’s overall usability.

6.1 Study Design

Participants took the following procedure for the study:
(1) Training. Participants first completed a short demographics

questionnaire. Next, they were given a brief (high-level) introduction
on TCAV, ACE, and what concept influence means. The study ad-
ministrator then walked the participant through available features and
functionalities of CONCEPTEXPLAINER; participants completed a sim-
ple training task to help familiarize themselves with the system. During
the training, participants could ask questions at anytime, and were
allowed to play around with the interface until they felt comfortable to
proceed.

(2) Task. Participants completed the following three tasks (T1-T3):
T1: Inspect the influential concepts for a given class: (1) Identify

the comprehensible concepts and state why they are comprehensible.
(2) Identify the incomprehensible concepts and state why they are
incomprehensible. (3) Review the concept influences; what are the
items that make sense to you, and what are the items that do not
make sense to you? (4) Take a look at the instances contained in
the influence matrix, find interesting cases and describe why they are
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interesting. This task primarily focuses instance-level and single class-
level analysis, and supports G1 and G2. Each participant completed T1
on two classes: one high-performance (accuracy > 0.9) and one poor-
performance (accuracy ∼ 0.1−0.3); class choices for each participant
were randomly selected from a high-performance set (zebra, tench,
lionfish) and a poor-performance set (tiger cat, appenzeller, seashore).

T2: Given two classes that are similar and have overlapping misclas-
sifications (i.e., images which should belong to C2 are classified as C3,
and vice versa): (1) Identify what are the commonalities between their
influential concepts. (2) Identify distinguishable influential concepts
unique to each class. This task represents instance-level and multi-class
analysis, and supports G2 and G3. The class pairs for T2 were ran-
domly selected from the following sets: {tiger cat, tiger}, {eskimo dog,
siberian husky}, and {police van, ambulance}. Note that if tiger cat
was chosen during T1, it was not an option in T2.

T3: Given a group of seven related classes representing various
vehicles (fire engine, police van, school bus, jeep, cab, ambulance,
beach wagon)): (1) What are the common influential concepts across
this group? Reason about the vehicle knowledge that the neural network
has learned and what vehicle knowledge it lacks. This task represents
multi-class and global-level analysis, and supports all four design
goals (G1–G4). All participants used the same set of seven classes for
this task. (Two participants had previously seen the police van and
ambulance classes in T2, however their results were in line with other
participants, so we do not believe this caused any study confounds
during this task.)

The task order was consistent. Each participant was given a verbal
description of the task (which was also available on a sheet of paper) by
the administrator. The think-aloud protocol was employed during this
stage; the administrator listened to verbal utterances to help confirm
that the participant was correctly performing the task and to check if the
participant’s interpretations of tasks and system features was correct.
Upon completion of a task, the participant verbally summarized their
answer(s) to the administrator.

(3) Freeform analysis. In this stage, participants conducted an
undirected, freeform analysis of ImageNet to gain insights on model
behavior using CONCEPTEXPLAINER. Participants were told to use
the tool until they were satisfied, but were required to spend at least
10 minutes. To prevent participants from becoming lost or frustrated,
we prepared an initial (optional) motivation scenario which was only
given if participants asked for guidance: “Check if the neural network
is working sensibly on well performing classes.” Only one partici-
pant asked for this, as we found that the others had ideated their own
exploratory goals upon completing the task stage. Participants also
verbally reported their thought processes during this stage.

(4) Review. Participants completed a short usability survey to rate
various system components using 7-point Likert scales; they were also
allowed to provide comments or critiques about the system.

6.2 Participants and Apparatus

We recruited ten participants: nine graduate computer science students
at Arizona State University and one analyst with two years experience
in a data company (average age = 25.8, SD = 2.08; 8 males, 2 females).
Although a couple of the participants had colloquial familiarity with
AI/ML, none had expertise in deep learning development or analysis,
and all were unfamiliar with concept-based explanation methods. Study
duration averaged 86 minutes (SD = 15).

CONCEPTEXPLAINER was shown using Google Chrome in full-
screen mode on a 30” monitor at 3840×2160 resolution. Study ses-
sions were conducted in a quiet, office environment with no distractions.

6.3 Study Results

To analyze the study, we first report quantitative ratings from the review
stages’ usability survey. We next report on qualitative verbal comments
and responses given by participants, which were collected via the think-
aloud protocol and summary answers during their tasks.

To analyze these verbal comments, we used a grounded theory
procedure [42] to qualitatively code comments based on assessing how

Fig. 6. Participant usability ratings about CONCEPTEXPLAINER based on
the survey given during the user study’s review stage. Median ratings
are indicated in gray.

CONCEPTEXPLAINER promotes insights and supports the design goals
G1–G4.

6.3.1 System Usability Ratings

Fig. 6 summarizes system usability based on participants ratings from
the survey completed during the review stage. Ratings are broken
into two types: (Q1–Q3) the overall usability and effectiveness of the
system, (Q4–Q13) the usability of individual features.

In general, feedback was positive. We highlight that the system was
considered easy to use (Q1), learn (Q2), and understand (Q3), and that
the individual interface panels, the class navigation panel (Q5–Q6),
the class concept view (Q7–Q11), and the concept navigation panel
(Q12–Q13) were all positively regarded.

6.3.2 Feedback from Novice Users

The survey ratings show that CONCEPTEXPLAINER achieves good
usability. Here, by analyzing the verbal comments and responses of
participants, we reflect on the types of insights users can generate with
the system, specifically in the context of the design goals (G1–G4).

(G1) Contextualizing concepts using the concept navigation
view. The concept navigation view was heavily used and considered
positively as a way to explore new concepts. In particular, several
participants inspected similar concepts using thi view as a way to verify
their intuition or mental model about a concept of interest. “I’m trying
to see what are concepts similar to this one because I want to know if
my thought is correct” (p5). “This map thing [the concept navigation
view] is cool. I can compare this [concept] with similar ones” (p8).
“The navigation view helps me understand a concept better” (p9).

(G2) The concept view is effective revealing class-specific con-
cepts. Several participants regarded the class-specific concept view
within class-concept view as effective in revealing influential concepts.
Specifically, the list of concepts ranked by concept influences provided
them with intuitive insights for network behaviors. “This is helpful be-
cause I can immediately see what the neural network learned about the
class” (p3). “It doesn’t make sense that top concepts are background
patches...middle concepts should be moved up. It’s clear in the view”
(p8).

Despite liking the class-specific concept view, participants some-
times encountered incomprehensible concepts during their analysis.
While most concepts had “good quality,” and participants could under-
stand them at a glance, some other concepts did not present a uniform
pattern, which sometimes led participants to get stuck. Trying to make
sense of such concepts seemed infeasible. In part, this is a byproduct
of the concept generation pipeline used in CONCEPTEXPLAINER’s
backend, which automatically extracts and defines concepts (bottom
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up) as opposed to creating them by hand using some rules (top down).
Unfortunately, this process is not error-prone as it can extract and de-
fine noisy, unhelpful concepts, too. When users encounter with such
concepts, they can slow down their analysis process. We discuss this
issue more in Sect. 7.1.

(G3) Concept links are effective revealing inter-class concept
overlap. Participants reported it was easy to identify conceptual links
between classes and understand them by using the concept view. “I can
see that concept cluster 5 are green areas in the two classes.” (p2, ana-
lyzing the tiger cat and tiger classes), “The first link is white-fur stuff.”
(p5, analyzing the Eskimo dog and Siberian husky classes), “I can see
silhouette of cars, tire and window [being the common concepts].” (p7,
analyzing the police van and ambulance classes). As an extension of
the current system, two participants (p1, p9) requested the ability to
compare two or multiple concepts in parallel.

(G4) Instance analysis was found to be useful for identifying
data quality issues.

A couple of participants identified (unprompted) data quality issues
solely using instance analysis view. “Clearly, real tigers are mislabeled
as tiger cats in the testing set” (p3). “Why is there a tiger stripe in
tiger cat concept 8? It doesn’t make sense ... Oh I see why, because
there are tiger pictures in ground truths” (p8).

Although participants in general like the instance analysis views,
four participants (p1, p5, p6, p8) mentioned it was hard for them to
link concepts with their segments in the image instance view. Three
participants (p1, p3, p7) mentioned that instances sometimes seemed
counterintuitive. “Some instances are highly (positively) influenced by
the concepts but are still misclassified, why?” (p7, while analyzing
tiger cat). “Why are ‘police’ letters negatively influential here?” (p3,
analyzing police van). “Why are cab cases all negatively influenced
but correctly classified?” (p1, comparatively analyzing multiple car
classes). The current interface does not support answering these sorts
of “why?” questions; see Sect. 7.1 for discussion on this.

7 DISCUSSION AND CONCLUSION

We have presented CONCEPTEXPLAINER, an interactive visual an-
alytics system that supports non-expert users to explore and probe
concept-based explanations of deep learning models. Based on a set of
usage scenarios and a robust user study, we demonstrate that CONCEP-
TEXPLAINER addresses a number of design challenges (C1–C4) and
goals (G1–G4) that are important to the problem of concept-based ex-
planation for non-expert users. In particular, we show how non-experts
can effectively reason about model behavior at different analytic scales
(i.e., instance, class, and global levels). Below, we discuss takeaways
and lessons learned from our experiences in designing and evaluat-
ing CONCEPTEXPLAINER, which include identifying current system
limitations and opportunities for future research directions.

7.1 User Study Takeaways
In general, the user study demonstrated the overall performance of our
system from a human-centric perspective, indicating that it provides
good usability and successfully supports the design goals (G1–G4),
while also illustrating nuances and complexities in concept-based ex-
planations. For example, some concepts in the system were not com-
prehensible to participants, which could slow down (or derail) their
analytic process. Unfortunately, there is no easy way around this is-
sue; in fact, it is an acknowledged problem that automatic concept
discovery invariably introduces some amount of noise [14]. As a future
workaround, CONCEPTEXPLAINER employs a modularized design.
As novel concept discovery methods are developed (which hopefully
reduce noise), they can be integrated into our system.

Another interesting takeaway from our study is that participants
tended to use the instance analysis view more than we expected; based
on feedback, we see several potential avenues for future extensions to
enrich functionality. For example, the current instance analysis view
provides instance-level explanations in terms of individual concept
influences. A logical next step could be illustrating how the interplay
of different concepts influence an instance’s prediction. For example,
both “snowy background” and “white fur” are positively influential

for the white wolf class. When these two concepts co-occur in an
instance, do they increase the likelihood of a white wolf prediction,
compared to if only one concept is present? To achieve this type of
fine-grained analysis, we plan to adopt techniques such as VRX [13] in
future versions of CONCEPTEXPLAINER.

7.2 Serendipitously Supporting an Unexpected Task
Our user study also revealed an explanatory task supported by CON-
CEPTEXPLAINER that we did not intentionally support. During the
freeform analysis stage, several participants analyzed if the model
“understood” a class by quickly tabbing through instances in the class-
specific concept view ((J) in Fig. 1). This allowed them to comprehend
a rough estimate of the types of instances making up the class, and to
use this as a basis to understand the influential concepts that the model
has learned for the class. This “fact-checking” action was unexpected
to us, but demonstrates the flexibility of the system’s visual analytics to
support diverse actions to interpret deep learning behavior.

7.3 CONCEPTEXPLAINER’s Suitability for Expert Users
To understand CONCEPTEXPLAINER’s suitability for expert users,
we conducted a set of pair analytic sessions [2] and semi-structured
interviews with three deep learning experts (Ph.D. students with 3+
years experience in AI research). The intent was to formatively assess
the system’s potential applicability for expert users, and to investigate
how the system could be extended to better support them.

Each opined that the system was easy to understand once the concept
method was illustrated and a walk through of the interface was given.

In terms of altering the system to support expert usage scenarios,
it was suggested that concept explanations could be juxtaposed with
visualizing the inner architecture and logic of the neural network. Such
“opening up the black box,” when juxtaposed with concepts, could
enable novel ways to investigate and understand peculiar or unexpected
model behavior. For example, when training a model, tools like CON-
CEPTEXPLAINER can be used to identify the conceptual root cause
of misclassifications between two similar classes, or to identify issues
in ground truth labeling. Along these lines, one expert also suggested
we augment the interface to let users focus on revealing concept dis-
tinguishability, so it becomes more explicitly clear on what basis the
neural network discriminates between classes. In the future, we plan
to explore ways to integrate techniques that combine concepts with
visualizing the model’s inner architecture, though such designs are
likely unsuitable for non-experts.

7.4 Concept-based Explanations in Other Domains
Currently, concept-based explanations have primarily been applied in
image classification scenarios. Likewise, our system is optimized for
this type of deep learning task, as opposed to other domains (e.g., natu-
ral language processing). As a future step, we would like to explore the
use of visual analytics as a modality for probing and exploring concept-
based explanations applied to other (currently unexplored) domains,
such as speech recognition or time series prediction. Such domains
bring their own complexities; e.g., in image classification, a user can
directly observe the pixels in a set of image patches representing a
concept, but there are no direct analogs to this process in many other
domains. Despite this, visualization may prove to be a key approach
for this, due to the power of visualization in being able to graphically
render abstract data in ways that reveal patterns and insights.
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