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ABSTRACT

The Epidemic Simulation System (EpiSimS) is a scalable, com-
plex modeling tool for analyzing disease within the United States.
Due to its high input dimensionality, time requirements, and re-
source constraints, simulating over the entire parameter space is
unfeasible. One solution is to take a granular sampling of the input
space and use simpler predictive models (emulators) in between.
The quality of the implemented emulator depends on many factors:
its robustness, sophistication, configuration settings, and suitability
to the input data. Visual analytics (VA) can be leveraged to provide
guidance and understanding to the user. In this paper, we have im-
plemented a novel VA interface and workflow for emulator building
and use. We introduce a workflow to build emulators, make pre-
dictions, and then analyze the results. Our prediction process first
predicts temporal time series, and uses these to derive predicted
spatial densities. Integrated into the EpiSimS framework, we target
users who are non-experts at statistical modeling. This approach al-
lows for a high level of analysis into the state of the built emulators
and their resultant predictions. We present our workflow, models
and the associated VA system, and evaluate the overall utility with
feedback from EpiSimS scientists.

Keywords: Predictive Modeling, Visual Analytics, Epidemic Vi-
sualization, Spatial-Temporal Systems.
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1 INTRODUCTION

Disease spread is a complex problem in today’s globalized world.
A number of factors influence a disease’s impact, including trans-
mission rate, incubation period, antiviral supplies, and population
dynamics. Mosquito-borne illnesses such as chikungunya [19] have
had recent outbreaks in North America, highlighting the need to un-
derstand the critical parameters in the spread and diffusion of these
diseases.

Simulation is one way to do this. The Epidemic Simulation Sys-
tem (EpiSimS) is a scalable, complex, agent-based model for sim-
ulating the spread of infectious diseases within the United States
[36]. A single EpiSimS run generates a large set of temporal,
geospatial, and multivariate data, and requires significant compute
and time resources. Because of this, it is impractical to test over
the entire input parameter space. One solution is to take a discrete
sampling of the input parameter space, and employ a simpler pre-
dictive model to fill in the gaps. Such “simulation of simulations” is
sometimes called scientific emulation; the idea is that an emulator
can map the high-dimensional inputs to outputs with a reasonable
degree of confidence and without having to run the full simulation.

In this paper, we are studying the feasibility of visual analyt-
ics (VA) in an emulation workflow. Informally, the process is this:
build an emulator, analyze the emulator, make a prediction, analyze
the prediction. However, consider that a built emulator, defined as
a predictive model, selected parameters, and a set of input data, can

be good or bad at making accurate predictions. It’s output and ac-
curacy confidence can depend on many factors. Good VA helps
inform the user whether the emulator is suitable for running predic-
tions. If VA indicates aspects of the emulator have issues, such as
outlier data points, the user can modify or select a different predic-
tive model. When satisfied, the user makes predictions. Here VA
lets the user analyze the prediction in relation to other runs in the
dataset. In our view, the prediction itself is not the goal, but a place
for more analysis.

In the context of EpiSimS, our motivation is to predict and ana-
lyze disease runs. The EpiSimS scientists, while experts at disease
simulation, are not statistical modeling (or even visualization) ex-
perts, thus they are good candidates for this system. We employ
two main panels: one for emulation and one for prediction, inte-
grated into the existing EpiSimS viewer application, focused on
using simplified visuals that combine color, comparison, and in-
teractivity. From the emulator panel, users build and analyze an
emulator. The prediction panel is used for making predictions, both
temporally and spatially, and is where the user can review the pre-
diction’s place in both input parameter and spatiotemporal output
space. Specifically, our contributions in this paper can be summa-
rized as follows:

1. A workflow for non-statistical modeling experts to build em-
ulators, run predictions, and analyze the outputs.

2. A set of models for predicting time-varying data, and a spatial
predictor derived from output temporal predictions.

3. Novel visual interfaces for building and analyzing emulators
and their predictions.

4. Integration into the visualization application for a large-scale,
scientific simulation framework, specifically, EpiSimS.

2 BACKGROUND AND RELATED WORK

There are two main facets to this work. Disease simulation and
visualization is the first, and EpiSimS is our particular flavor of it.
The second is predictive and parameter space analytics.

EpiSimS and Disease Visualization The Epidemic Simu-
lation System (EpiSimS) is a large-scale, discrete-event, agent-
based model for simulating disease spread within the United States.
It is highly customizable, scales to large population and geo-
graphic sizes, and can implement a number of response mech-
anisms for disease mitigation such as school closures, antiviral
stockpiles, and behavior modifications. For prior EpiSimS work,
see [24, 22, 23, 36, 25]. The work in this paper uses the chikun-
gunya disease model from [25], although we augment that system
by extending the front end viewer and introducing the emulation
workflow.

More generally, visual analytics plays an important tool in the
study of disease spread. The time-dependent geographic nature of
disease makes maps an effective method of showing overall diffu-
sion [17]. A recent systematic review [6] discusses many appli-
cations that utilize map views (and other techniques) for disease
spread. A single geospatial mapping may be insufficient, however,
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Figure 1: The steps of our emulator and prediction workflow. First, build an emulator E by specificing input runs and parameters (xi, tsi) with
a predictive model m. E can then be analyzed, or make predictions when given an input parameter vector Xpred . Predictions are a two-step
process: time series first, then spatial snapshots for a set of days. The finished prediction can then be analyzed.

to communicate the overall spatial evolution of a disease. Anima-
tion and small multiples [38] are two ways to show a disease’s life-
cycle. Each technique can offer advantages or drawbacks depend-
ing on the task: animation makes it easier to see overall trends [16],
but small multiples may be better for focused analysis [35]. We use
the small multiples technique as a component of our spatial predic-
tion process (see Sections 4.2 and 5.2).

Maps can be linked with other views to form disease surveil-
lance interfaces. Line charts, storyboard spreadsheets, heatmaps,
flow maps, and even word clouds have been utilized recently
[10, 1, 2, 28, 4]. Our interface combines map views, bar and line
charts, and star coordinate plots to analyze the spatiotemporal dis-
ease predictions.

Visual Predictive and Parameter Space Analytics The sec-
ond facet of our work concerns visual predictive and parameter
space analytics. This includes support and validation of simulation
models and analyzing behavior. A good example is [40], which
decomposes high-dimensional input spaces via interpolation of pa-
rameter presets on a two-dimensional layout. [15] uses visual ana-
lytics to study the relationship between input parameters and simu-
lation output time series. Like us, they generate a coarse sampling
of input space, but they are focused on studying areas of output
uncertainty using a heterogeneity metric. We are more interested
in analyzing how a predicted run relates back to other runs in the
dataset.

Many predictive applications are concerned with spatial predic-
tions and their inherent uncertainty. Weather and climate models
are notable [30, 32, 39], but other areas include topics like fishing
grounds [31], bird populations [8], criminal activity [20], and even
real-world disease trends [18].

Lastly, some works are concerned with building, validating
and/or helping the user find optimum inputs for predictive mod-
els. Tuner [37] involves exploring the trade-offs of the high-
dimensional input space to find “good” region segmentations in
brain scans. [29] uses multiple linked views for the validation of
regression models in the case of finding desired optimized parame-
ters. Likewise, [3] is concerned with exploration of continuous pa-
rameter spaces for optimizing inputs. These papers differ from our
work because we have no “optimum” disease setting, only finding
what is realistic and possible (though optimizing mitigation strate-
gies is another matter). Muhlbacher and Piringer introduce a frame-
work for building and validating regression models in [26]. The
focus of their work is on selecting subset features and then validat-
ing the quality of the built models. Our work is similar in that the
user chooses input parameters to build on, but we focus more on the
overall workflow of building an emulator, making predictions, and
then analyzing those predictions.

Recently, [33] gave a survey of applications concerning visual
parameter space analysis, and defines a conceptual framework for
categorizing these types of applications. We formally discuss our

place in this framework in Section 10 in the Appendix.

3 OUR APPROACH AND WORKFLOW

Analyzing a scientific simulation like EpiSimS is challenging. One
reason is scale: the data size is large, it takes a long time and lots
of resources to run, and the complex raw output files must be post-
processed before any analysis is attempted. Even for the relatively
small population and location sets used in this study (simulating
chikungunya on the Washington D.C. metro area, about 500,000
people), runs took up to an hour to complete. (Larger demographic
sets can take hours and scale to hundreds of nodes.) Output files
must then be parsed, indexed, and stored to a database.

One issue with emulating EpiSimS is its high input granular-
ity. Individual geographic locations can have parameters such as
“mosquito count,” or various danger indexes. For example, lo-
cations classified as office buildings are usually set as safer from
mosquitos than outdoor locations like parks. The parameter space
quickly becomes overwhelming with so many dimensions and po-
tential values.

What can be done is a discrete sampling of pertinent input pa-
rameters, using techniques such as Latin hypercube sampling [21].
From this set of input parameters, full runs can be done. After dis-
cussion with the EpiSimS team, we focused on a relatively small
subset of the input parameter space and ran approximately 100
runs to generate a granular (if somewhat irregular) sampling space.
Some parameters remained consistent for all people and locations
(such as the beta value, or transmission index), some were location-
specific (like workIo, which measures relative safety at work loca-
tions). This defined our input data and parameter space.

The scientists involved with EpiSimS are disease experts (soci-
ologists and biologists) and simulation engineers. Despite some
knowledge of statistical modeling, none were experts in regression
model building and validation. This was an important factor to con-
sider; we didn’t want them to blindly trust any built emulator. To
assist users, we designed a workflow that focused around straight-
forward steps: build an emulator, analyze the emulator, make a pre-
diction, evaluate the prediction. These are noted in the headers of
Figure 1.

More formally, the user first selects their desired input specifi-
cations and builds an emulator. These include input parameters to
use, runs in the database, and a predictive model. The user can ana-
lyze the built emulator to see if particular bits are detrimental, such
as existence of outlier runs, and rebuild the emulator if desired.

With a built emulator, the user makes predictions. This is a two-
step process: first predicting the disease temporally, then predicting
a set of spatial maps. At this point, we hit a potential roadblock: if
there is no ground truth to compare the output to (i.e., the simula-
tion hasn’t been run yet), how does the user know if the prediction
should be trusted? We use visual analytics to review how the pre-
dicted run compares to other existing runs. The user explores can



explore a prediction’s place in both the input parameter space and
the output results.

4 PREDICTIVE MODELS AND METHODS

This section discusses the predictive models and methods we have
implemented. To build an emulator, the user first loads a set of
runs and parameters. These define the input data. EpiSimS runs
are stored in two ways: as grids of density points that denote daily
disease values, and as aggregated sets of time series that denote
things like “infections per day” or “attack rate per day.” We define
an emulator E as:

E = (m,{x1, ...xn},{ts1, ...tsn})

m is a temporal prediction model, each xi is a run’s input parame-
ters, and each tsi is the run’s selected time series. To make a pre-
diction P, a vector of input parameters (termed Xpred) is supplied.
E first uses the model m to generate a predicted output time series,
tsp. This is used as input to the spatial predictor, which generates
predicted disease map views, {map1, ...mapz}. This is formalized
as:

P = (E,Xpred , tsp,{map1, ...mapz})

E is the selected emulator used to build the prediction, Xpred the
parameters to predict on, tsp the predicted output time series, and
{map1, ...mapz} are the z predicted spatial maps generated by our
system. (z is chosen by the user, default is z = 6.) Figure 1 show’s
the steps of building an E and using it to create a P.

4.1 Temporal Predictive Models

We have implemented three initial predictive models (the m vari-
able) to predict output time series (tsp). Each is implemented as a
set of R scripts, called by the main application. Our system is easily
extensible; new models can be created and added with no front-end
application changes. Currently, we have two regression-based mod-
els, and one nonparametric model. We give a brief overview here
of each. To see the mathematical formalism of each, see Section 11
in the Appendix.

4.1.1 Simple Linear Regression

Linear regression [14] is based around the potential linear relation-
ship between prediction parameters and run time series points, and
is one of the most widely-used regression techniques. Because this
model can only predict on a single point, we build a regression
model for each day k of tsp. If each day’s model is defined as Yk,
then m = {Y1, ...Yn} for n timesteps.

4.1.2 Stepwise Selection Model with Interactive Terms

Based on linear regression, this technique uses two- and three-way
interaction of parameters to build an improved model m. The added
terms drastically change the interpretation of all the coefficients
in the model by including their relationships among the variables.
Comparing all variable relationships produces an exponential num-
ber of interaction terms, though not all of these are necessary for
construction. The process may even drop single terms if they are
deemed insignificant for that timestep. Stepwise selection can go
both forwards and backwards along the timesteps. By being based
on the AIC score, the selection optimizes itself to pick the set of
interaction terms to give the best model it can [12, 5]. Like linear
regression, a different model is computed for each day, and m is the
set of daily models.

c1k = 2000 at day 125
tspk = 1700 at day 125

g1k=    tspk   = 0.85 

g1k × c1k

g5k × c5k

g2k × c2k ...

Density points for k

Average the
density maps

Time series for P and c1 to c5

k = day 125

Apply KDE

c1k 

Figure 2: To build a spatial prediction for a particular day k (in this
case, k = 125) with c = 5, the time series of the five closest runs
(denoted c1 to c5) to the prediction’s time series (tsp) are retrieved.
The fractional value of each cik is gik = tspk/cik. This is applied to
each cik’s density points, and all five of the scaled cik point maps
are averaged. A KDE function [34] is applied to this averaged map
to generate day’s predicted density map.

4.1.3 Nonparametric Model

The two above models build tsp by predicting individual days. This
may lead to inadequate fitting, say if one or more days are high
outliers. This could skew that part of the curve towards unrealistic
behavior. A nonparametric model is an alternative to this, where
the overall curve’s function is predicted, as opposed to being pieced
together by a set of predicted time steps. Our model defines three
features to generate the curve: { f1, f2, f3}. f1 = x(max(yi)) is the
day that the run’s peak occurs on. The peak’s value is the second
feature, f2 = max(yi). f3 determines the curve width, by using a
single σ point (the normal practice). When a prediction is done, it
returns the three curve features; the time series tsp is then created
based on the features.

4.2 Derived Spatial Prediction

EpiSimS simulates disease spread at individual locations for each
time step, so at the most discrete level each geographic place could
be thought of as a full time series. In this view, we could take the
time series for each location and build a regression model. This
would quickly grow unwieldy, as EpiSimS can scale to the entire
United States (hundreds of millions of discrete locations). Even
for the Washington D.C. runs in this paper, there are approximately
35,000 locations. Building a regression model with 100 runs for
300 timesteps already has over a billion data points if we regress on
individual locations. Even using aggregated locations (where the
data is stored at more granular resolutions for fast level-of-zoom
queries), this is still unfeasible. We have therefore implemented a
derived spatial predictor based on the predicted time series output.
The pseudocode for this is in Section 12 in the Appendix. We give
an overview of the spatial heuristic here.

First, the system must choose a set of z days on which to build
predicted maps. These and are meant to be snapshots of the disease
evolution, showing its lifecycle over time. To generate these days,
we do the following segmentation process: First, we take the pre-
dicted time series tsp and find the delta between each day’s value.
We perform a hierarchical clustering on this list of deltas, and then
do a cut for the desired z number of clusters/segments (the default
is six). These clusters have a start and end day, and define the pre-
dicted stages of the disease. For each stage, a single day is chosen
as the “representative.”. This is done by finding the day with a delta
value that is closest-to-the-mean of all the deltas in its particular
segment. We now have z snapshot days, and build a spatial predic-
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(d) c = 20

Figure 3: Accuracy of the spatial prediction process with c =
1,5,10, and 20. We note on each figure the 90% threshold, where
90% of predicted points fall within the x absolute difference from
their real value. The system defaults to c = 5, a good balance of
accuracy and speed.

tion for each.
Figure 2 denotes the steps taken to generate a spatial prediction

for an single day. First, the system finds a set of c runs with the
closest overall time series to the predicted one (tsp), by finding the
Euclidean distance between tsp and each run’s time series. The
default is c = 5 runs, but it’s user editable.

For a single day k, the factional multiplier gik corresponds to
each ci run for that day. Dividing the tspk value by the cik’s time
series value gives gik. Each gik applies to one ci only, and a dif-
ferent gik is computed for each day k of ci. We retrieve each cik’s
spatial density (a grid of points stored in the database) and multiply
each point by gik to get a scaled density map for the k day. The
scaled maps are averaged together to generate mapk, which is the
predicted set of disease points for that particular day. To get the
spatial heat map for the day, we apply a KDE (with normal distri-
bution) [34].

4.3 Analysis of the Spatial Predictor
Our spatial prediction process works due to a tight interplay be-
tween the temporal time series of runs and their resultant spatial
distributions. To validate our spatial predictor, we analyzed how
accurately our process predicted existing runs in our dataset. If
the existing runs could be predicted accurately, it would mean two
things. 1) There is a tight correlation between temporal disease
time series and spatial mappings. 2) If a temporal tsp prediction is
accurate, the predicted spatial maps {map1, ...mapz} would also be
accurate.

We tested with c = 1,5,10, and 20. For each existing run in the
database, we retrieved its “became infected per day” time series
and produced the spatial predictions according to the above process
(with z = 6). When finding the c closest runs to an existing run, we
had to exclude the run itself from comparison (as the Euclidean dis-
tance of two identical time series would be zero). For each run, we
now had a set of z predicted spatial maps, and could compare them
to the actual (ground truth) maps for each day. For each density
point, we computed the absolute error between prediction and real
value. We combined the errors for all points into a single plot for
each run and c value, mapping the overall percent of points by their
error bound. For an individual run, we could then state a sentence

like, “90% of all density points in run 15 with c = 5 are within an
absolute error of 20.” (Maximum disease point values can go above
500.) The runs were overlaid to a single plot for each c value, gen-
erating four aggregated plots in Figure 3.

Our system defaults to c = 5, which we feel is a good balance for
accuracy and performance. At c = 1, some runs display very high
accuracy (the upper left lines in Figure Figure 3a), this is because
some runs in our dataset have similar positions in input parameter
space and almost identical output time series. Since only one run is
used to build the predicted snapshots, close similar runs with close
spatial mappings lead to very high predicted accuracy. This goes
away when increasing c to 5 because more runs are averaged in,
but the overall 90% accuracy threshold is lowered. When c is too
high, the time required to retrieve the density points for many runs
causes the application to slow, without increasing (or decreasing)
the overall accuracy. When performing this analysis, we created a
spatial analysis panel so users could compare spatial predictions to
other existing runs, see Section 5.3.

Figure 4: The emulator panel includes (A) a radar plot for important
numeric values, (B) error residuals, (C), parameter influence chart
(showing importance to the model and potential error), and (D) run
influences to the model.

5 VISUAL DESIGN

The existing EpiSimS viewer was originally designed for [25] as a
browser-based tool, and afterwards updated to a Java application.
Users create panels to analyze post-processed data. The three main
views in this system are (1) parallel coordinates to show run input
parameters, (2) line charts to show temporal outputs, and (3) maps
to show disease spread for a particular day (using a KDE-based
function [34]). Figure 11 in the Appendix shows these components.

We explicitly mention these because we utilize their ideas in the
new workflow panels: the emulator panel, the prediction panel, and
a third panel for analyzing spatial maps. For example, to build an
emulator, the user first loads a set of runs into the input parameters.
The set of runs comprises the input data and the user selects axes
here to define the input parameters to use. We now describe the
main new panels and their components.

5.1 Emulator Panel
This is where a user builds and analyzes emulators. First, the user
selects the predictive model m and makes sure to have the desired
runs loaded and input parameters selected. An emulator E is built,
and its analytics are loaded. Figure 4 shows a built emulator. We
visually display a number of traditional statistical metrics to inform
the user about the state of the emulator’s predictive model.

Radar Plot The radar plot (Figure 4A) contains a number of
numeric calculations for showing the state of the emulator’s predic-



tive model: R2, MSE, AIC and BIC, and the number of runs and
parameters used by the model.

R2, also known as the coefficient of determination, is a key out-
put in predictive model analysis. It measures how close the fitted
data is to the model. The closer the R2 is to one, the better the
model fits the data, so a higher value is desired. Relatedly, mean
squared error (MSE) measures total averages of the squares of the
errors. While R2 is a standardized measure of degree of fit in the
sample, MSE is an unbiased estimate of error variance. A lower
MSE is desired.

AIC (Akaike Information Criterion) and BIC (Bayesian Infor-
mation Criterion) are measures of the relative quality of a statistical
model for its given set of data [5]. More parameters can improve a
model’s accuracy but also result in overfitting. This creates a trade-
off between goodness-of-fit and the model’s complexity. BIC and
AIC resolve this conflict by penalizing the number of parameters in
the model. Lower BIC and AIC indicate the parameters had a bet-
ter fit. For our purposes then, smaller AIC and BIC mean a better
emulator. Usually, the AIC and BIC correspond to each other.

For linear regression, the number of parameters is the same as the
selected input parameters. Stepwise selection includes interaction
terms, and the nonparametric model includes all terms used to build
the three features (features are differentiated by color hues).

The values in the radar plot scale relative to other built emulators.
For example, a user can easily compare two emulators built from
the same set of input data to see which has a higher R2, or which
uses more parameters.

Error Residuals The error residuals show the average error
for each run in the built emulator (Figure 4B). Each run is assigned
to a spot on the x-axis, and its corresponding residual value (its
average error over all timesteps) is the y-value. Residuals should
be closely banded around y = 0 for a tighter predicting emulator.
If the residuals are distributed widely along the y-domain, or there
are has many outliers, there is larger potential for error within the
predictive model.

Parameter Metrics We show the parameter metrics with a
two-sided bar chart (Figure 4C), where each bar represents one pa-
rameter. The top side, with green bars, denotes the influence of
each parameter in building the model. We calculate this by taking
the square of the inverse of the p-value (which helps show if the
result is likely significant, i.e., caused by the independent value).
The larger the bar’s height, the more importance the parameter has
when making predictions.

The red-colored bars on the bottom denote the corresponding
standard error of coefficients for each parameter. This is used to
measure the precision of the estimate of the coefficient, so the
smaller the standard error, the more precise the estimate will be.
A smaller value is desired here. Both bars are normalized over the
set of parameters. The best case for a variable is high influence
(large green bar) with corresponding low error potential (red bar).
If all bars are the same (for either the top or bottom), it means that
all parameters have equal weight for that metric. In cases where
a single variable has both a higher green and red bar compared to
other parameters, this means that the parameter is very influential
in the resulting run, but has higher potential to cause imprecise pre-
dictions. Users should be cautious about this “outlier” parameter,
and consider running full simulations in that part of input parameter
space.

Run Influence We show the influence of each run in the bot-
tom bar chart (Figure 4D), where the height is determined by cal-
culating the square of its Cook’s Distance [7]. This estimates the
influence of each observation (each run) by measuring the effect of
deleting it. A higher value indicates the runs plays a more influen-
tial role in the emulator. This can be good or bad: if only a few runs
have high scores, they can overly distort the emulator’s predictions,

and may indicate the parameter space needs better sampling relative
to those runs (i.e., performing full EpiSimS runs with input config-
urations close to this to better sample these areas of the parameter
space). We normalize the runs and order them in descending value.
This chart is copied in the prediction analysis panel where it is used
as a navigation tool to help users explore runs in the dataset (see
Figure 5E).

Figure 5: The prediction panel allows analysis of a single predic-
tion. It’s main components are (A) temporal mean squared er-
ror bars, (B) time series lines for the prediction (red), other runs
(blue), and confidence and prediction intervals (dotted lines and
green bounds) (C) map snapshots based on time series segmenta-
tion, (D) a star coordinates plot for dimensional investigation of
runs in the input parameter space, and (E) the run influence bar
with closest runs highlighted dark blue.

5.2 Prediction Panel

Once an emulator E is built, the user loads a prediction panel and
makes predictions. The prediction panel loads with a parallel coor-
dinate tab showing available parameters for the selected emulator.
The user sets the value of each parameter to use (this is the Xpred
input vector for the model m), and the emulator generates a predic-
tion P. Because the predictive model m is pre-built, the temporal
prediction (tsp) is very fast. The majority of the time is spent doing
the spatial predictions ({map1, ...mapz}). When the prediction is
triggered, the panel switches to the analysis view (Figure 5). We
implement a number of components here to assist analysis.

Time Series Plot and Mean Squared Error Band Figure
5A and B show the predicted output time series (tsp) in a line chart,
and above that a color band showing the daily mean squared error
(MSE). The line chart initially loads both the tsp (red color) and the
time series of each closest ci run (dark blue), showing the user how
the closest runs temporally compare to the prediction. If desired,
more runs can be loaded into the line chart for comparison. tsp is
bound with its 95% confidence intervals [27] and 95% prediction
intervals [9], denoted as red dotted lines and a green bounding box,
respectively. In the MSE band above, red represents a higher value,
so these timesteps had more error in the emulator’s training data,
which indicates more potential for uncertainty on these days.

Map Snapshots To summarize the spatial evolution of the
predicted run, we display the predicted spatial snapshots and seg-
ments as generated in Section 4.2 (Figure 5C). The segments are
denoted on a track below the time series plot, and map snapshots
and their respective days are below this. Maps can be dragged
along their segment track to explore the spatial prediction at dif-
ferent days, but the idea is that the originally set snapshot day for
each segment represents the general disease state within that time
frame.



Star Coordinates Star coordinates [13] are a way to lay out
multidimensional data points on a 2D plane (Figure 5D). Each input
parameter is mapped to an axis, which can be dragged by the user.
The prediction and any loaded runs are mapped as single points
on the plane. Although a coarse layout for multi-dimensional data,
star coordinates allow a user to quickly explore the relationships of
points in dimensional space by interactively rearranging the axes.
Using this with the time series view lets a user quickly analyze if
runs with similar temporal outputs are related in input parameter
space.

Run Influence Bar Chart We copy the run influences bar
chart from the emulator panel, and place it to the bottom of the
prediction panel (Figure 5E), as a navigation tool. Each ci closest
run is denoted with a darker blue color, and the user can toggle runs
here to load their time series lines and star coordinate points for
further analysis.

5.3 Spatial Analysis Panel
To assist with the analyzing spatial predictions (Section 4.3), we
designed a map comparison panel (Figure 6). A user loads a base
run into the top row, generates its z map snapshots, and compares it
to a second run’s map snapshots at the same days. To the left of the
map snapshots, a line chart shows the time series of the two runs.
A set of scatterplots on the bottom row show comparative statistical
differences about the corresponding daily maps. A scatterplot to the
bottom left aggregates the daily scatterplots into a single view.

Figure 6: The spatial analysis panel can be used to compare two
runs (included predicted runs) to each other, both spatially and via
scatterplots. The line chart at left shows the time series of the two
runs and the left scatterplot aggregates the daily statistical views
together.

6 USE CASES

We now walk through two scenarios as a potential user. We demoed
to and then had the EpiSimS team walk through these to help famil-
iarize them with the system. We discuss their initial feedback from
this session and follow-up evaluations in Section 7.

6.1 Validating Good Emulators and Making Predictions
The user wants to build an emulator for predicting on three input
parameters: beta, K v, and a positive (Seasonal) Start Day. The
user first loads all runs into the input parameters panel with a Sea-
sonal?=YES value, and disables all input parameters besides the
desired three (Figure 7a). Predictions made using only three param-
eters will still have a measure of uncertainty because the disabled
parameters have variability, but the user can take this into account.

The user then builds three emulators, one for each predictive
model from Section 4.1, termed LR (linear regression), SS (step-
wise selection), and NP (nonparametric), see Figures 7b-d. Com-
paring the emulators, the user notes their similarities. The run in-
fluence and error residuals charts show no runs are skewed in either
influence or error. Each emulator should give stable predictions.

The parameter influence bar charts of the runs are interesting.
The LR model (Figure 7b) shows all three parameters as having

(a) Input Paramters Panel.
(b) Linear Regression (LR) Emula-
tor.

(c) Stepwise Selection (SS) Emula-
tor. (d) Nonparametric (NP) Emulator.

Figure 7: The input parameters panel and the three built emula-
tors for the initial use case. The runs are filtered to have a Sea-
sonal=YES value, and other axes have been manually disabled. For
the built emulators, the error residuals and run influences charts are
similar, but the difference in the parameter influences is notable.
For the LR, they have relatively smooth influences. The SS model
uses interaction terms, and the NP model defines parameters across
its three features.

equivalent potential error (red bar chart), meaning they each can
equally introduce error into predictions. The top (green) bar chart
shows beta is the most important parameter, K v the least. This
is different in the SS model (Figure 7c), which shows K v has the
highest parameter influence. The NP model has very different pa-
rameter influence bars (Figure 7d). For each feature, a different
parameter is the most influential. beta, the most influential param-
eter for f2, has red bar values for each of the three features, so it is
the most widepsread potential source for error.

Finally, comparing the radar plots, the user sees that the LR
model is built using of a smaller number of parameters. For this
reason, and because the parameter influence chart is more stable
than the other emulators, the user selects the LR emulator.

The user then creates a prediction using the LR model with the
following input settings: beta = 0.26, K v = 4000, and Start Day =
40. The resultant prediction panel is shown in Figure 5. The user
notes that the closest runs in the time series chart (dark blue lines)
were all ones that had values near the top in the run influence bar
chart. This means that these runs that were close to the prediction
played a relatively more important role in the emulator’s model.
Potentially, this means that the runs can cause overfitting, so per-
haps more full EpiSimS runs near this point in the input parameter
space should be run. The runs are also plotted in the star coordi-
nates. Examining it, one run maps to the same three-dimensional
mapping as the prediction (i.e., it has the same K v, beta, and Start
Day values). To see if any other runs map to this same position,
the user loads all the runs in the panel, populating the star coordi-
nates and time series plots. Hovering over the prediction point on
the star coordinates plot now (Figure 8) shows that four runs are at
this point. These four points have the same beta, K v, and start day
values. To see the runs’ full parameters, the user can load them into
the input parameters panel and view them (not shown).

At this point the user is satisfied. The emulator will predict with
good behavior based on the input data, and the prediction the user
made was validated by analyzing it in relation to other runs in the
prediction panel.



Figure 8: Hovering over a set of points in the star coordinates plot
highlights the runs in the corresponding bar chart and time series.
We can see that the highlighted runs have different time series from
the predicted run even though they match on the three input param-
eters that were used for the prediction.

6.2 Analyzing Emulators in Detail

The user next wants to analyze emulator panels to determine if a set
are worth using for predictions. For space, we only show analytic
components for the nonparametric (NP) model, see the Appendix
for all three emulators (they show similar results). The user first
builds the emulators using all 106 runs in the dataset with all seven
parameters (Figure 4 is the NP emulator). The pertinent analytic
components of this NP panel are shown in Figure 9a-c. The run
influences chart shows there is a small subset of runs (left side of
Figure 9a) that have a large importance relative to the other runs in
the model. There are usually two reasons for this:

1. These are outlier runs. A single outlier can cause mispredic-
tion, and potentially skew the model. Removing these runs, if
they are indeed outliers, will improve the model.

2. These runs play a much more important role due to linearity
of the parameters. This can happen if the input data is not
fully ranked, which means there is insufficient data informa-
tion to estimate the model. In this case, the first several runs
play the important role, and the others are approximate linear
combinations of these. Even with over 100 runs, most of the
runs could not provide much information towards building the
model.

(a) Run Influences Be-
fore.

(b) Radar Plot Before. (c) Error Residuals Be-
fore.

(d) Run Influences Af-
ter.

(e) Radar Plot After. (f) Error Residuals Af-
ter.

Figure 9: This shows how dropping four overly influential runs
helps to improve an emulator: (a, d) The run influences are more
stable, (b, e) MSE decreases and R2 increases slightly, and (c, f)
two outlier points (highlighted in the top plot) are removed.

To figure out which is the case, the user rebuilds the emulator
after removing four high-influence runs and compares how the ana-
lytics have changed (Figure 9d-f). In the radar plot (Figure 9e), the
R2 value has increased slightly and the MSE value has decreased,
both of which indicate an improved model. In other words, the
removed runs’ error residuals were outliers (the first reason in the
list), and removing them made the emulator better.

The error residuals plot and the run chart also confirm this (Fig-
ure 9f and d). Two of the removed runs were outliers, and the run
chart displays a much smooth distribution of influences.

Since the runs were outliers, it suggests two things. First, re-
moving them improved the emulators. Second, these outlier runs
represent areas of the parameter space that need to be simulated
more. If the user ran full EpiSimS simulations close to the outlier
runs in the parameter space, then future emulators could include
these runs with less issue.

If the runs were linear combinations of each other (the second
possibility), that would mean that despite the large number of runs
there was little variability in parameter space. The information
needed to build the model was insufficient with this dataset, so more
varied EpiSimS runs should be done over the whole of parameter
space. In either case, an ideal model building analysis should have
a smooth run bar without any dominating runs. If this is the case,
the R2 and MSE values would not change too much when removing
a single run from the input data.

7 USER FEEDBACK AND DISCUSSION

Ensuring that our workflow and components are intuitive and usable
by the non-statistical experts of the EpiSimS team is a critical task.
When we introduced the new components to the EpiSimS team, we
did an initial demo of the new functionality and workflow using the
two use cases, then supervised the users as they walked through the
scenarios and played around with the system. This led to a first
round of feedback during which many suggested changes to the
system were made. We recommended that in the following weeks
the scientists play with and use the new panels and workflow while
we implemented some of the initially suggested changes. Both su-
pervised (where we observed and helped users) and unsupervised
usage took place. Also during this time, the spatial analysis panel
(Section 5.3) was developed and added to the application codebase.

Feedback we received from users through discussion and email
was (aside from bug submissions) mostly qualitative. In our initial
demo, we had to define terms like R2, so a Help overlay option was
suggested. Users were initially concerned about the subtle interplay
and understanding required of some metrics (such as analyzing the
run influence chart in the second use case), and there was a small
learning curve for users as they became accustomed to the system.
However, users noted in follow-up evaluations that they were better
able to understand the interface components as they became famil-
iarized with the workflow. One noted that the visual display of
statistical metrics (instead of raw numbers) helped simplify things.
While our system did not completely alleviate the need to learn
about the metrics, visualization eased the process. Users became
proficient at being able to build and edit emulators, analyze for out-
liers and recognize parameter space gaps, and make and analyze
predictions. As a general feature in EpiSims development, users
stated the new emulation capabilities would be beneficial for future
studies. Normally, only a small number of input parameters are
tested, and only one parameter is changed and analyzed for each
run. By being able to load a granular parameter sampling and use
emulation in between, users told us that in future studies they will
be able to test over a higher-dimensional parameter space.

Specifically regarding the emulator panel, one user remarked that
it’s good to easily see if runs are skewed to high influence, as they
can quickly be verified as outliers. This helps determine if more
varied full runs are needed to “fill in the gaps.” Although they could



see outlier runs for an emulator, and areas where predictions would
probably perform poorly, one request was for an automated way to
show and analyze parameter space gaps, such as in [15]. We are
considering this a future work.

On the prediction panel, team members liked that they could an-
alyze the predicted run both temporally, spatially, and in relation
to other existing runs. One user noted that “comparing a poten-
tial run to existing similar runs for the time series is useful, helps
to understand the effect of the parameter settings.” The predicted
map views were said to be beneficial on an intuitive level, a sort
of “sneak peak” into a prospective run’s spread. When the spatial
analysis panel was made available, one user said the ability to spa-
tially compare an existing run to the prediction was a “very cool
analysis tool, being able to see how they will look visually as com-
pared to a real run.” Users also liked that they could compare only
existing runs if desired, omitting the prediction altogether. “This is
something we could really leverage for future analysis,” and has led
to discussions about expanding the spatial analysis panel’s capabil-
ities.

Regarding current system limitations and drawbacks, evaluations
have touched on a number of areas. One thing users want to do is
build emulators iteratively while assessing variable influences, like
as is done in [26]. This would help users better validate that their
chosen predictive model was more precise, and alleviate some parts
of the subjective trial-and-error process currently performed when
building emulators. Users also want a better system for highlight-
ing correlations and significant results when they happen between
panels.

The three predictive models we have implemented could also be
more refined, and studied quantitatively to see how well suited they
are for EpiSimS data. For example, in the nonparametric model’s
predicted time series, our curve function is equal for both sides.
Although this works well for our particular EpiSimS chikungunya
dataset, this is not always the case (see [23], where the time series
can have multiple humps). We are considering more refined mod-
els (such as [11]), which can be easily integrated into our system
and workflow, but this is an ongoing research topic. Similarly, our
spatial predictor may not perform as well if the geographic disease
spread is more stochastic and/or subtle. Future EpiSimS datasets
will have to do accuracy analysis to ensure the spatial predictor is
feasible. Finally, we note that our panels could have scalability is-
sues on larger datasets containing thousands of runs over hundreds
of parameters. For this dataset of seven parameters and 100 runs,
it’s not an issue, but too many runs and/or parameters would make
the bar charts insufficient visualization techniques.

8 CONCLUSIONS

In this paper we describe a novel emulator workflow and visual
analytics interface. We combine a number of statistical metrics,
interactions, predictive models, a novel spatial predictor, and visu-
alization techniques for emulator building, usage, and analysis.

Our approach utilizes main two panels: one for emulators and
one for predictions. The emulator panel is useful for showing the
overall state of a built emulator. The prediction panel is used for
making and analyzing potential simulation runs, letting a user ex-
plore both output and input space. We also provide a spatial analyt-
ics view, to let a user geographically compare the predicted run to
other runs in the dataset.

We validate our design through two use case scenarios and feed-
back from users. We also discuss and justify our spatial predictor.

Possible future work includes integrating feedback obtained
from users, mostly concerned with helping users understand the
large number of statistical metrics and their sometimes subtle re-
lationships with each other, as well as giving users better analysis
of input parameter space. We are also considering adding more pre-
dictive models to our system, and performing a quantitative study

of their predictive ability.
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