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9 APPENDIX

This supplemental document contains discussion and figures that due
to space constraints, could not fit into the main paper. This is intended
to assist with reader understanding by providing more formal discus-
sion of topics, and to give images that either could not fit into the main
paper, or were possibly too small to easily see.

10 CATEGORIZING OUR APPROACH IN THE VISUAL PARAME-
TER SPACE ANALYSIS FRAMEWORK

In 33, Sedlamair et al. define a conceptual framework for analysis of
visual parameter space. This framework is for pertinent applications
to describe, discuss, and, evaluate visual parameter space applications
(including predictive applications). They define three main compo-
nents to their framework: 1) a data flow model for describing data
generation, derivation, and prediction, 2) a set of navigation strategies,
and 3) typical analysis tasks for validating parameter analytics. We
now summarize our application in the context this framework and its
key terms.

1) Data flow model For generating our input space, we use a set
of EpiSimS runs as our sampling space. This input is very coarse, as
it only consists of approximately 100 runs. The runs direct outputs are
multi-variate and highly dimensional, so we use derivation to generate
aggregated statistical measures for each run. Prediction, as can be
guessed by the title and theme of this paper, is also implemented.

2) Navigation strategies We employ a global-to-local naviga-
tion strategy. Taking our large number of sample points, we build a
model that serves as an overview of our dataset. Performing predic-
tions investigates individual parameter configurations, to see how the
output time series and spatial mapping. Although simulation steer-
ing might seem a natural fit for our simulation, this is unfeasible for
EpiSimS, due to the long run- and post-processing time required for
each run. Instead, we allow an author to export the particular input
parameter configurations as a script for running EpiSimS.

3) Analysis Tasks Sedlamair et al. also describe a number of
potential analysis tasks that can be explored, and we use some of them
for our use case examples in Section 6. Specifically, we are concerned
with the ideas of sensitivity in the built models and predictions, as well
as outliers of various runs and input parameters in EpiSimS.

11 FORMALISM FOR THE PREDICTIVE MODELS

This section mathematically defines the predictive model from Section
4.1.

11.1 Simple Linear Regression
Formally, we define a linear regression model as:

Y = Xβ

Y =

y1
...

yn

 ,X =

x1,1 · · · x1,p
...

. . .
...

xn,1 · · · xn,p

 ,β =

β1
...

βp



where n is the number of runs of input data set, p is the num-
ber of parameters, and β is estimated by β̂ , given by:

β̂ = (XT X)−1XTY

If we define Xpred as a vector of input parameters to predict on, and
we want to get the fitted value Ŷ (the output time series value), we use
the following formula:

Ŷ = Xpred β̂

Note that this Ŷ only gives the predicted output for a single timestep.
This means we need to calculate the regression for each timestep in-
dependently. Therefore, m, which represents the overall predictive
model, can be represented by Yi for each i day.

11.2 Stepwise Selection Model with Interactive Terms
Formally, the stepwise selection linear model still has the same ex-
pression as the linear regression model, but with different X , defined
as:

yi = β1xi,1 + · · ·+βpxi,p +βp+1xi, jxi,k

X =


x1,1 x1,2 · · · x1,p x1, jx1,k · · ·
x2,1 x2,2 · · · x2,p x2, jx2,k · · ·

...
...

. . .
...

. . .
...

xn,1 xn,2 · · · xn,p xn, jxn,k · · ·



where j 6= k, j and k are between 1 to n. The model requires
increasing the number of βis the same as with the number of columns
in the X matrix. βp+1xiaxib are interaction terms.

11.3 Nonparametric Model
For a nonparametric model, the overall curve’s shape is generated;
each day’s individual value is derived from the curve’s structure. This
is in contrast to the regression models above, which predict individual
timesteps, and then the output curve is pieced together. For our model,
we fit the curve as a generated bell curve. We define three features of
the curve: f1, f2, and f3, whose value can be derived from each input
time series points y.

y = exp(− (x− f1)2

2 f 2
3

)∗ f2

f1 = x(max(yi)) is the day that the run’s peak occurs on. The peak’s
value is the second feature, f2 = max(yi). This means the peak point
for a time series y has the coordinates ( f1(y), f2(y)). f3 determines
how wide the bell curve is. This is usually done using a single σ

point, which is what we do as well.
Each input run can be described by its three features. We take

this feature-described run set and then build a single linear regression
model using the features and their corresponding input parameter vec-
tors (β in the linear regression model). When given an input parameter
vector (Xpred), the model can simply output the predicted f1, f2, and
f3 and generate the curve. To see what the outputted value is for a par-
ticular day, simply find that x-spot on the curve and find it’s y-value.

Figure 10 references one issue with nonparametric models, as they
pertain to regression. The confidence and prediction intervals are not
temporally bounded to the predicted day. Instead, they are defined
as two trace curves around the predicted curve. The peaks of these
two curves form the opposite edges of a bounding box that contains
the actual predicted peak. To get a usable bounding curve for our
visualization, we freeze the f2 bound and slide the f1 bounds together
until they orient over the top of the predicted trace curve.

f1

f2

Fig. 10: The confidence and prediction intervals for the nonparametric
model define a bounding box that the predicted curve’s peak will be
within (i.e, the f1 and f2 will be within these bounds). To get a suitable
interval bounding for our viewer, we freeze the f2 feature, and slide
the f1 feature along the x-axis until it is centered at the peak day of the
predicted time series.

12 FORMALISM OF THE SPATIAL PREDICTION ALGORITHM

This section presents the pseudocode process for performing a spatial
prediction from Section 4.2. There are three main steps in this: 1)
Find the z representative snapshot days to use (the default is z = 6). 2)
Find the c closest runs (the default is c = 5). 3) For each representative
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day, build the predictive spatial map as a set of geospatial points. The
points are returned, and a KDE converts them into a heat map view for
the front end viewer.

tsp ← p r e d i c t i o n ’ s t ime s e r i e s
deltas ← empty l i s t w i th l e n g t h = l e n g t h ( tsp )
z ← nubmer o f segmen t s d e s i r e d

# b u i l d deltas l i s t
f o r t i m e s t e p k from 1 t o l e n g t h ( tsp ) {

deltas ( k ) ← | tsp ( k ) − tsp ( k + 1 ) |
# deltas ( k ) ←

√
deltas(k) i f d e s i r e d

}

# i n i t i a l i z e segments
segments ← l i s t o f s i z e l e n g t h ( tsp ) w i th

segments ( k ) . delta ←delta ( k ) ,
segments ( k ) . start ←k ,
segments ( k ) . end ←k

# h i e r a r c h i c a l l y c l u s t e r segments t o s i z e = z
w h i l e ( l e n g t h ( segments)>z ) {

k ← p o s i t i o n i n segments wi th s m a l l e s t delta
segment ( k ) . end ←segments ( k+1 ) . end
segment ( k ) . delta ←segments ( k ) . d e l t a +

segments ( k+1 ) . d e l t a
remove segments ( k+1 ) from l i s t

}

# f i n d t h e day t o use f o r each segment
f o r t i m e s t e p k from 1 t o z

s ← segments ( k )
s . dayToUse ← day of t h e d e l t a t h a t ’ s c l o s e s t

t o t h e mean of a l l d e l t a s from
deltas ( s . start ) t o deltas ( s . end )

# g e n e r a t e t h e s p a t i a l p r e d i c t i o n maps
cruns ← l i s t o f c c l o s e s t r u n s t o tsp

based on E u c l i d e a n d i s t a n c e
maps ← empty l i s t w i th l e n g t h = z
f o r each day k i n segments . dayToUse

valpred ←tsp ( k )
f o r each ci i n cruns

valc ←ci t ime s e r i e s v a l u e a t day k
g ← valpred/valc
cmap(k) ← d e n s i t y p o i n t s f o r ci a t day k
f o r each p o i n t pt i n cmap(k)

pt ← pt ∗g
mapsk ← a v e r a g e o f each ci ’ s cmap(k)

r e t u r n maps
# a p p l y KDE t o each mapk t o c o n v e r t t o h e a t map

13 ADDITIONAL FIGURES

This section displays enlarged and additional figures from the paper.

Fig. 11: This shows standard (pre-existing) EpiSimS components. (A)
daily map view, (B) editor for setting for map layer colors, (C) input
parameters panel, and (D) output time series line chart.

Fig. 12: This is the input parameters selection for Use Case One. The
user enables the beta, K v, and Start day axes.

Fig. 13: When a user makes a prediction using a built emulator, the
prediction panel initially opens with a parallel coordinates view. The
desired emulator is selected from the drop down, and the user chooses
predicted values by dragging the axes.
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(a) Linear regression (LR) emulator

(b) Nonparametric (NP) emulator

(c) Stepwise Selection (SS) emulator

Fig. 14: These are the three built emulators for Use Case One.

(a) Linear regression (LR) prediction

(b) Nonparametric (NP) prediction

(c) Stepwise Selection (SS) prediction

Fig. 15: These are the predictions from the three built emulators in Use
Case One, with input parameters set according to Figure 13. Notice
that because their predicted output time series are not the same, the sets
of closest runs are also different. This affects the spatial predictions
(the map views).
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(a) Linear regression (LR) emulator with 106 runs

(b) Nonparametric (NP) emulator with 106 runs

(c) Stepwise Selection (SS) emulator with 106 runs

Fig. 16: These are the three built emulators for Use Case Two, which
were built from 106 runs and seven input parameters. Note that each
model has error residual outliers and a set of runs that dominate the
run influences bar chart.

(a) Linear regression (LR) emulator with 102 runs

(b) Nonparametric (NP) emulator with 102 runs

(c) Stepwise Selection (SS) emulator with 102 runs

Fig. 17: Removing the four highest ranked runs (in the run influences
chart) improved each model considerably (and dropped the schoolIo
parameter due to linearity). Error residual outliers are removed, the
run influences bar charts are more stablized. In the NP model, the
MSE and R2 values are both improved considerably (in the LR and SS
emulators these also improve, but the change is small).
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