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Figure 1: Examples of collaborative positional arrangements encoded during the study across the three visualization techniques
used: (left) Same Space on a node-link diagram, (middle) Separate Space on a bar chart, and (right) Mixed Space on a scatter plot.

ABSTRACT
Augmented reality (AR) provides a significant opportunity to im-
prove collaboration between co-located team members jointly ana-
lyzing data visualizations, but existing rigorous studies are lacking.
We present a novel method for qualitatively encoding the posi-
tions of co-located users collaborating with head-mounted displays
(HMDs) to assist in reliably analyzing collaboration styles and
behaviors. We then perform a user study on the collaborative be-
haviors of multiple, co-located synchronously collaborating users
in AR to demonstrate this method in practice and contribute to the
shortfall of such studies in the existing literature. Pairs of users
performed analysis tasks on several data visualizations using both
AR and traditional desktop displays. To provide a robust evaluation,
we collected several types of data, including software logging of
participant positioning, qualitative analysis of video recordings of
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participant sessions, and pre- and post-study questionnaires includ-
ing the NASA TLX survey. Our results suggest that the independent
viewports of AR headsets reduce the need to verbally communicate
about navigating around the visualization and encourage face-to-
face and non-verbal communication. Our novel positional encoding
method also revealed the overlap of task and communication spaces
vary based on the needs of the collaborators.
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1 INTRODUCTION
Visualization is widely employed for analyzing, reasoning, and mak-
ing decisions about data, but as data-driven problems become larger
and more complex, support and understanding for collaborative
visualization is becoming increasingly important [14, 22, 37].

Immersive modalities such as augmented reality (AR) are in-
creasingly being used for 3D visualization to take advantage of
semantics like stereoscopic rendering. Unfortunately, there is rel-
atively little research with visualization-based user studies in AR,
particularly ones that consider collaborative visual analysis. For
example, collaborative AR is one of the least-studied aspects of the
field, consisting of only 1.7% of such papers published in ISMAR
across the 2010s [43]. Such studies are important for establishing
empirical guidelines and best practices, meaning there are signifi-
cant research questions in collaborative AR visualization contexts,
such as how to support team-based analysis, reasoning, hand-off,
and decision-making. Additionally, consistent, quantitative evalua-
tion methods are needed to increase the rigor of such studies.

In particular, we are interested in following research question
(RQ): “How do dyads (two-person teams) collaborate when per-
forming visual analysis of 3D datasets in AR?” We investigate
this question in two primary ways: (§3) We first propose a novel
positional coding method to quantify the collaborative coupling of
co-located dyads for an AR contexts based on measuring the over-
lap of their task space and communication space. This method, based
on prior work by Tang et al. [49], and updated for head-mounted
display (HMD) devices, can be used to promote a standardized
analysis of collaboration behaviors. (§4–5) We then design, con-
duct, and analyze an experiment where dyads perform both closed
and open-ended analysis tasks on visualizations of 3D datasets,
in both AR and with a desktop-based computer (the latter modal-
ity serving as a comparative baseline). We conduct an extensive
coding of participant actions and communications to analyze col-
laboration between dyad team members in the AR and desktop
modalities.

Our study results provide nuanced insights into how participant
behavior changes in AR vs. desktop scenarios — e.g., participants
gesture and observe each other significantly more when collaborat-
ing in AR, suggesting that non-verbal movement and view-sharing
between participants play a fundamentally different role in achiev-
ing a shared understanding and sensemaking among collaborators
in AR (compared to traditional desktop displays).

We also demonstrate our novel positional coding method on the
AR trials from the experiment. In particular, our method shows
that participants frequently synchronize their views for commu-
nication, challenging the idea that overlapping communication
and task spaces are inherently beneficial to users. Instead, the
overlap (or lack thereof) seems to depend on the collaborative
behaviors participants engage in, and those behaviors change fre-
quently over the course of collaborating on a single visual analysis
task.

Based on analyzing our experiment’s results (including the appli-
cation of the positional coding method), we propose several recom-
mendations for dyad-based analysis tasks that use 3D visualization,
and identify future research questions in the domain.

2 RELATEDWORK
2.1 Communication.
Computers create an artificial separation between the “task space”
and “communication space” [21], illustrating the importance of the
overlap of these spaces in evaluating communication between col-
laborating users in computer supported cooperative work (CSCW)
systems. Billinghurst and Kato define a “task space” as “the shared
workspace” where tasks are performed, a “communication space” as
“the common interpersonal space” where collaborators communicate
with one another, and state the former is often a subset of the latter
in face-to-face conversation. Applying the work of Ishii et al. [23],
they say CSCW systems introduce seams when the task space is
not a subset of the communication space, as users are forced to
switch between the two [4]. Collaborative visualization systems
should be designed to remove such seams [23], so modalities that
encourage an overlap of task and communication spaces are de-
sirable. Our study considers this overlap in both desktop and AR
modalities, shown in Figure 2, and the novel method we propose for
qualitatively encoding user positions in collaborative AR provides
an empirical means to quantitatively measure this overlap.

“Conversational grounding” is the development of mutual under-
standing between conversational participants. Visual information
is a vital part of collaborative communication because it helps par-
ticipants gain situational awareness (an understanding of the state
of the space) and establish conversational grounding [27]. Gergle
et al. observed participants relying more on verbal communication
as their shared view of the task space decreased, and concluded
that showing participants what the other is doing is not enough;
both participants need a shared understanding of what the other
can see [19]. When collaborators could see a shared workspace but
not each other, Ou et al. observed a strong connection between the
difficulty of communicating about the task and a need to rely on
vocal communication to establish conversational grounding [39].

2.2 Collaborative Augmented Reality.
Collaborative software (i.e., groupware) is often organized using a a
space-time matrix [15, 24] based on whether collaborators are spa-
tially co-located or remote, and if interaction occurs synchronously or
asynchronously. Schmalstieg et al.’s work during the 1990s [42, 46]
identified five key advantages to collaborative mixed reality: Vir-
tuality, Augmentation, Cooperation, Independence, and Individu-
ality [4]. More broadly, several studies have found AR contributes
to collaboration [2, 4, 7, 11, 48], and has advantages for co-located,
synchronous collaboration [31, 32, 34, 47]. However, a recent survey
of AR research by Dey et al. [10] found that most collaborative user
studies examined remote collaboration; co-located collaboration
was identified as an opportunity for future research.

Most AR systems are visualization-based, designed to allow users
to visualize, annotate, and inspect 3D models collaboratively [38].
Collaborating AR users are better able to coordinate actions when
sharing a common point of view because they can rely on physical
reference points in their shared environment [9, 36]. Additionally,
placing the workspace between users reduces the amount of verbal
communication to accomplish collaborative tasks, as it places the
task space as a subset of the communication space like in natural,
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unmediated conversation [26]. The positional encoding technique
we propose provides a consistent way to measure this placement.

2.3 Collaborative and 3D Visualization.
Collaborative visualization occupies a unique design and research
space where success requires combining aspects of data analysis,
teaming, groupware, and perception [22]. Prior studies have exam-
ined various workflows for collaborative teaming (e.g., [33, 51, 55]),
but few have investigated communication and collaboration behav-
iors (particularly for dyads) for visualizations in AR.

3D visualizations are commonly used in both individual and
collaborative work in stereoscopic environments (e.g., AR, VR, and
CAVEs) [37]. While 3D visualization has well-known drawbacks
(such as occlusion and perspective distortion) [37], it’s been shown
to better support certain tasks and sensemaking mechanisms: 3D
visualizations improve a sense of context when analyzing data [45],
certain types of tasks (e.g. tasks requiring orientation, navigation, or
viewing a larger context) are better suited for 3D visualizations [50],
and the higher levels of immersion afforded by stereoscopic 3D
visualization aids users in evaluating presented data [41].

2.4 Collaboration Styles
Tang et al. [49] conducted a pair of user studies with participants
engaging in exploratory information-finding on tabletop displays
to observe collaborative coupling and proposed four collaboration
styles ranging between highly engaged and highly disengaged.
These styles were defined in part by encoding communication
patterns and the positioning of users at fixed locations around a
table relative to their partners. Isenberg et al. [22] later extended
this work and proposed additional collaboration styles. These styles
were focused on tabletop displays, and to the best of our knowledge,
similar studies investigating collaboration styles using AR for data
visualization and analysis have not yet been conducted. To address
this, our study uses the similar measures to Tang et al. and builds
upon their work to propose an updated method (see Section 3)
to similarly classify observed behaviors into collaboration styles
within the context of HMDs.

3 MEASURING SPACE OVERLAP
One significant motivation for this work is the current lack of a
quantitative method for measuring the communication and task
space overlap between co-located, synchronous collaborators when
such collaborators are able to freely move about a workspace.

The position coding used by Tang et al. [49] serves as the inspi-
ration for the novel method of position coding used in this study.
Tang et al. classify the position of two participants each in one of
six spaces around a tabletop visualization and encode the collective
arrangement of the participants based on their relative positions to
each other. This technique was effective, but was limited to partici-
pants each occupying one of several predefined locations; free-form
participant movements across a space cannot be encoded. Our po-
sitional coding method overcomes this limitation while similarly
using the relative positions of participants, and goes further to
provide a means to measure the relative degree of overlap of the
communication and task spaces noted by Billinghurst et al. [5].

Figure 2: Shown is the overlap of communication and task
spaces in two positional arrangements of co-located, syn-
chronous collaborators. The left has overlapping spaces. The
right has separate (non-overlapping) spaces and corresponds
with common desktop setups, such as the setup in this study.

3.1 Locating Task and Communication Space
To adapt the positional arrangement for a free-form AR space in a
way that measures overlap of the communication and task spaces,
consider the 2D area formed by projecting a top-down view of the
work space into a plane. (Figure 3 illustrates the example within
the 15×15 foot space used in our study.) The visualization and each
participant are represented by points on this plane. A line can be
drawn through each point to form a triangle.

The task space exists centered around the visualization, and is de-
fined by the space taken up by the visualization and any interfaces
for interacting with it. Although the exact shape of the communica-
tion space is unknown, a few reasonable assumptions can be made
about its location in space. The communication space is used for
sharing communication cues such as gaze, gestures, and non-verbal
behaviors [5]. Two observations can be made: (1) Each of these
cues depend on the physical reach of the person communicating,
thus such gestures can only be made in the area within reach of
the communicator’s body, and (2) these cues must be observed to
be part of the communication. Considering these two observations,
the communication space must include the area around each partic-
ipants’ body as well as the line-of-sight between them. While the
exact size and shape of the communication space will vary with
differing body shapes, sizes, and motor ability, the space itself will
be largely confined to an ellipsoid defined by the position of the
two people engaging in the communication. A line drawn between
the two participants will thus approximate the center of this space.

3.2 Defining and Measuring Space Overlap
The degree of overlap of the two spaces from the perspective of
each participant can thus be defined as proportional to the distance
between the line between the participants and the center of the
chart. Furthermore, the angle formed by the line between partici-
pant A and participant B and the line between the same participant
A and the visualization is proportional to that distance and thus can
be used to examine the overlap of the two spaces for participant
A (and vice-versa for participant B). It is important to note that
the two angles, one from each participant’s point of view, are com-
pletely independent despite belonging to the same triangle, as no
other restrictions on the third angle nor the length of any sides are
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placed. Thus one participant’s degree of overlap does not impact
the other participant’s degree of overlap (given unlimited space).

The relative amount of overlap can be measured by compar-
ing the angles between participants over time. This will provide a
sense of the movement of the participants’ spaces and a continuous
measure of the relative space overlap as the participants collabo-
rate. Changes in this measure can be used as evidence of a shift in
collaborative behavior, similarly to Tang et al.’s analysis [49]

3.3 Positional Encoding
To aid using this measure as a data point in classifying behaviors,
the perspective of a participant can optionally be categorized into
overlapping or non-overlapping spaces, analogous to the two setups
depicted in Figure 2 and described by Billinghurst et al. [5]. Inde-
pendently applying these two categories to each participant leads
to three possible arrangements (unique combinations): (1) Same
Space - where both participants have overlapping spaces, (2) Mixed
Space - where only one participant has overlapping spaces and the
other has non-overlapping spaces, and (3) Separate Space - where
both participants have non-overlapping spaces.

Each participant’s angles are encoded into these categories by se-
lecting a threshold angle. This threshold depends on the size of the
task space and the nature of the tasks being performed, but the tech-
nical limitations of the hardware can be a practical upper-bound.
HMD’s have a limited field-of-view, so the horizontal viewing angle
(angle formed between the two vertical edges of the device’s display
and the center point between the user’s eyes) can serve as such an
upper-bound; if the angle between the participant’s partner and
the visualization were any greater, the HMD would be incapable
of rendering the visualization for the participant. Thus, any angles
greater must be non-overlapping views. We chose 43.3 degrees to
correspond with HoloLens 2’s threshold (used in our study). This
threshold was selected because it represents the horizontal viewing
angle of the HoloLens 2 (calculated from the reported 52 degree
diagonal viewing angle on a 3:2 area [35]), and thus is the greatest
possible angle at which a participant could simultaneously see the
visualization and their teammate without turning their head.

While we only consider AR HMDs in this paper (specifically
HoloLens 2), this same technique can be extended for all types of
AR devices with appropriate modification. Determining the upper-
bound threshold for handheld devices (HHDs) is more complicated,
as the position of the device’s display is not fixed relative to the
user’s eyes; the user may hold the device close to their face, or at
arm’s length. Projector displays do not have an upper-bound thresh-
old, but other thresholds dependent on the participant’s natural
(non-augmented) field-of-view will still apply. Once a threshold is
derived, the remainder of the technique works the same for all de-
vices. A threshold value should be chosen that makes sense for the
tasks and visualization being used, with the upper-hound serving
as a fallback if a more-precise threshold is not known.

4 STUDY DESIGN
To investigate the research question defined in §1, we propose three
related hypotheses, and design and run a within-subject experiment
to test them, where dyads are shown visualizations in AR (and on a
desktop baseline) and must perform common visual analysis tasks.

Our hypotheses center around three types of actions commonly
used in collaborative sensemaking and analysis [22, 49]: (1) physical
gestures, (2) verbal communication, and (3) spatial proximity.

4.0.1 Physical Gestures. Kiyokawa et al. [26] found that teammates
communicated more with gestures than verbally when a collabo-
rative visualization was placed between them, as compared to the
side of both. When an AR visualization is placed in an arena, users
can freely move around it. In contrast, teammates sitting in front
of a desktop computer sit side by side. We thus hypothesize:
H1: Participants will use more gestures when communicating while

using AR than while using the desktop.
H2: Participants will use more gestures while using AR while in

the Same Space arrangement than in the other arrangements.

4.0.2 Verbal Communication. Gergle et al. [19] observed collab-
orators relying more on verbal communication as the amount of
the workspace they visually shared decreased. When collabora-
tors stand apart from one another, they have different points of
view of the workspace; the amount they visually share decreases.
Compared to AR, the desktop forces visually sharing a significant
amount of the workspace. We thus further hypothesize that:
H3: Participants will verbally communicate more when using AR

than when using the desktop.
H4: Participants will verbally communicate more in AR while in

the Same Space arrangement than in the other arrangements.

4.0.3 Spatial Proximity. Billinghurst and Kato [4] suggests that
overlapping the communication and task space is beneficial to users.
Fussell et al. [18] found that collaborators focus their gaze equally
as much on their partner (communication space) as they do on their
tools and task (task space). We thus hypothesize that:
H5: Participants will spend more time in the Same Space arrange-

ment than in either of the other two arrangements.

4.1 Experimental Design
The experimental design was within-subject. Participant teams of
two completed a series of common visualization tasks on a set of
visualizations in one of the two modalities (desktop or AR), before
repeating the same set of tasks in the other modality. A mix of
objective and subjective measures were recorded.

4.1.1 Study Space. The experiment was conducted in a quiet, well-
lit room with a cleared 15 × 15 ft “arena” for the AR trials and a
desk set up to the side for the desktop trials. Visualizations were
centered in the arena and tape markings ensured participants had
the same starting point for each AR trial.

4.1.2 Desktop Modality. Visualizations were presented on a 24-
inch, 60Hzmonitor with 1920×1080 resolution. Participants sat side-
by-side and shared a single mouse and keyboard to rotate, zoom,
and freely move the full-screen viewport around the scene, but
could not interact with the visualization in any way. This setup (see
Figure 4) and navigational model were chosen to mimic common
3D modeling and CADD workstation configurations in industry.

4.1.3 AR Modality. Participants were each wore an HMD (Mi-
crosoft HoloLens 2). The HoloLens 2 features a 60Hz 2k resolution
3:2 display for each eye and a 52 degree (measured diagonally) field
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Figure 3: The three possible positional encodings. 𝜃 is the threshold angle.

Figure 4: An example of the setup for the desktop modality.

of view [35]. Visualizations filled a 1𝑚3 cube anchored to the center
of the study area. Participants could freely walk around the study
space but could not interact with the visualization in any way.

4.1.4 Software. Visualizations were shown in both modalities via
a custom Universal Windows Platform (UWP) app for a consistent
experience. The app was developed in Unity 2019 and Visual Studio
2019 using theMicrosoft Mixed Reality Toolkit (MRTK) and scripted
in C#. The full codebase is publicly available at https://github.com/
svl-at-asu/Exploring-AR-Impact-Paper-Scripts.

4.2 Trials
Each team conducted 24 trials (two trials per modality-visualization-
task combination, where 2×3×2×2 = 24) with the order randomized.
Two trials per combination were selected to maximize the number
of trials conducted, while keeping the duration of a participant’s
engagement with the study reasonable (about one hour total). Ten
teams were recruited for the study, resulting in 240 total trials.

Due to hardware failures, seven desktop trials for one team and
three AR trials for another were discarded, reducing the total to 230
trials for testing the hypotheses. Trials with a missing counterpart
(same task and chart type) in the other modality were also discarded
to preserve the paired test property for the statistical analysis. The
resulting degrees of freedom are reported with each test in §5.

Participants were given a single task each trial. The same set of
tasks was repeated in each modality, and a given task was always
paired with a specific chart type.We test two types of visual analysis
tasks: open and closed. Open tasks are open-ended and do not have a

single correct answer.We use guided search as the basis for the open
tasks, as it has been previously used to encourage discourse and
communication [40]. In contrast, closed tasks have a single, correct
answer. The tasks, shown in Table 1, were chosen because they are
common tasks in Brehmer and Munzner’s multi-level visualization
taxonomy [6], and include discovering (or generating) insights by
identifying, comparing, and summarizing visualizations, via explore,
browse, and locate actions; notably, this taxonomy provides explicit
accounting for open and closed tasks.

4.2.1 Visualizations. A mix of three chart types (data visualization
techniques) commonly used for showing data in 3D [3, 8, 16, 41, 54]
were used to increase the generalizability of the results. These tech-
niques cover the primary (non-interactive) groupings for the func-
tions of visualizations in decision-visualization environments [25].
Figure 1 shows examples of these techniques. The dataset for each
of the 24 visualizations was synthetically generated using the tech-
niques from Whitlock et al. [54] and Watts et al. [53]. Our script
files publicly available at the previously-linked GitHub repository.

Table 1: This table shows the tasks given to participants for
each of the task types and chart types included in the study.

Closed Task Open Task

Scatter
Plot

Which point is the largest? Which of the three axes (direc-
tions representing a variable) do
the points suggest is the most im-
portant?

Is there a trend? If so, what direc-
tion is it going in?

How many sub-groups (also
known as clusters) would you di-
vide these points into?

Bar
Chart

Which bar is the tallest? Find a repeating pattern in the
heights of the bars.

Is there a trend? If so, what direc-
tion is it going in?

How many categories would you
divide all the bars into based on
height?

Network
Diagram

What is the diameter of the graph
(the longest connected chain of
nodes you can find, without re-
peating any nodes)?

How many sub-groups (also
known as clusters) would you di-
vide these nodes into?

Which node has the most con-
nections?

Which node is the most impor-
tant?

https://github.com/svl-at-asu/Exploring-AR-Impact-Paper-Scripts
https://github.com/svl-at-asu/Exploring-AR-Impact-Paper-Scripts
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4.3 Procedure
Each participant independently took the pre-study survey. The
administrator then described the visualization techniques. Before
beginning AR trials, the administrator walked participants through
using the HoloLens’s ob-board eyes calibration. Similarly, the desk-
top controls were described prior to the desktop trials.

For each trial, the administrator read participants a pre-selected
question based on the randomized order from the task questions
in Table 1 and then answered any questions if participants were
confused about the current task or the correct procedure for using
the current modality before starting the trial time. Time was not
paused while participants asked such questions during the trial.
Participants could freely navigate around the visualization and
communicate with each other for the duration of the trial.

Trials were limited to two minutes, or when participants indi-
cated they had an answer (whichever happened first). After each
trial, participants explained their answer to the study administrator
and returned to their starting positions (or reset the view on the
desktop). This process was repeated for each of the 24 trials; partic-
ipants completed 12 trials in one modality before switching to the
other. An opportunity for a break was given between each trial.

After completing all trials, participants took a post-study survey
to assess their experience and preference with the two modalities.

4.4 Data Collection
Our data analysis primarily relies on classification and coding of
user behavior, which falls under the rarest category (“qualitative
analysis”) in Dunser et al.’s AR evaluation survey [12]. To generate
a rich set of data for exploratory analysis as suggested by Lam et
al. [30], we combine software logging of participant positioning
with qualitative encoding from a video recording of the trials and
with surveying participants via pre- and post-study questionnaires.
Additionally, the completion time for each trial was recorded for
comparison and for normalizing other counted measures by time.

4.4.1 Software Logging. The viewport position of each user was
directly recorded by the software in six degrees of freedom sampled
at 60 Hz, similarly to the study performed by Büschel et al. [8].

4.4.2 Qualitative Video Encoding. As is common in AR user stud-
ies [22, 29], trials were video and audio recorded. Three types of
participant “events” were encoded: (1) gestures, (2) looks, and (3)
utterances. Each recorded event was time stamped and tagged with
the event type, the participant the event was for, and the team and
trial number. Additional attributes were recorded for gestures and
utterances. Which participant(s) controlled the mouse, and thus
viewport (the “driver”), for each desktop trial was also recorded.

(1) Gestures events included any hand or arm motions used to
communicate with the teammate. Motions not used to com-
municate (e.g. adjusting the HMDs or mask) were excluded.
Sequential gestures were counted by either the participant
lowering their arms between gestures or by a change in the
train of thought between gestures (as indicated by their ver-
bal utterances or pauses). Additionally, the gesture target
(self, other participant, chart, background) and intent (refer-
ence, description, adjust view, conversational) was classified.

(2) Look events included visible changes of the participant’s
head position to look at their teammate. A continuous look
was counted once regardless of duration. Cases where both
teammates looked at each other were counted as two sepa-
rate looks (one per teammate). This was to track the number
of times participants switched their focus between the task
and communication spaces, as discussed in prior work [5, 26].

(3) Utterances included any verbal communication with one
of the following purposes: reference, position, acknowledge-
ment, or viewport. This is based on a simplified version of a
previously used scheme [28]. Consecutive utterances were
broken up along significant pauses between or expressions
of complete thought. Acknowledgement utterances, as used
by Kraut et al. [29], were counted separately (even if part of a
single sentence). Total utterances were also counted, broken
down into categories based on target: a participant speaking
to the other, to themself, or to the study administrator.

To evaluate the communication efficiency, deictic phrases were
counted for each utterance event. Deictic phrases are any phrase
that cannot be understood without the contest in which it is spo-
ken; phrases such as “this”, “those”, and “here”. Two types were
separately counted: person deixis and spatial (place) deixis. This
covers two of the three types [13, 17] and is consistent with previ-
ously used encodings [26, 28]. The third type, time deixis, was not
counted because none of the tasks involved temporal data.

4.4.3 Questionnaires. User questionnaires are valuable in evaluat-
ing, and cross-referencing with performance data for, mixed reality
systems [1]. Our pre-study questionnaire collected participant de-
mographics and familiarity with computers, AR, and their study
partner. The post-study questionnaire includes the NASA Task
Load Index (TLX), which is commonly used in evaluative studies
(e.g., [36, 52]), and free-response questions for participants to give
feedback on their experience with the devices in each modality
including their preference and ease of communication.

4.5 Participant Demographics
Twenty participants took part in the study (ten teams). We recruited
participants who knew each other to “facilitate rich and smooth
conversation” [26] and to lower the risk of spreading COVID-19.

Three general demographics were collected: age, gender, and
education level. Participant ages ranged from 19–56 years (𝑥 =

29, 𝜎 = 13.0). Twelve participants reported male, seven female, and
one nonbinary/genderqueer. For education level, seven reported
“some college,” three “associates degree,” five “bachelors degree,” four
“masters degree,” and one “PhD.” Additionally, four study-relevant
background factors were assessed in the pre-study survey using
5-point Likert scales: (1) familiarity with computers, (2) familiarity
with AR/VR headsets, (3) data visualization and/or analysis, and (4)
experience working with their study participant.

5 RESULTS
All statistical analysis on the dependent variables discussed in Sec-
tion 4 was performed with 𝛼 = 0.05 to determine significance.
G-tests and pairwise t-tests were generally employed. The degrees
of freedom, t-statistic, and p-value are reported for all tests. Counts
are reported both normalized and not normalized for time, as a mix
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of both has been done in past studies [5, 26, 28]. The collected data
is included in the supplemental materials for this paper on GitHub.

5.1 Task Completion
The task completion time, in seconds, was analyzed for influences
from modality, visualization type, and task type. Although not the
focus of this study, the range of completion times (𝑛 = 230,𝑚𝑖𝑛 =

2,𝑚𝑎𝑥 = 120, 𝑥 = 82.4, 𝜎 = 34.4) gave confidence in a cross-
sectional sample of task difficulties. The times for 220 trials were
analyzed with a paired t-test, and showed no significant change
across modality (t(109)=-0.205, p=0.838, |d|=-0.0219).

Although participants were given opportunities between trials to
take breaks and were instructed to inform the study administrator
if they wanted to stop at any time, no participant did so. One
mentioned feeling some visual fatigue while using the HoloLens,
but clarified they did not want to stop and never mentioned it again.
No obvious signs of fatigue were observed in any study participants.

5.2 Verbal Communication
5.2.1 Quantity. Utterances were counted in one of three possible
categories: a participant speaking to the other, a participant speaking
to themself, and a participant speaking to the study administrator
then aggregated in each category for each modality (desktop, AR). A
Goodness of Fit (G-Test) revealed the proportions of each category
varied significantly across modality (p=5.94 × 10−10). The greatest
change was in the speaking to the study administrator category,
and is discussed more in Section 6. Rerunning the test revealed
the proportion between the first two categories did not change
significantly (p=0.0545). We thus conclude that the modality did
not impact the amount of verbal communication, and reject H3.

5.2.2 Purpose. Utterance events were aggregated in each modal-
ity (desktop, AR) by purpose categories (reference, position, ac-
knowledgement, viewport). A Goodness of Fit (G-Test) revealed the
proportions of each category varied significantly across modality
(p=5.10 × 10−28). The greatest change was in the viewport cate-
gory (198 for Desktop vs 52 for AR). This is likely explained by
the fact each teammate had their own, independent viewport in
AR whereas they shared a common viewport on the desktop. More
communication about the viewport was necessary in the latter, as
only one participant at a time could navigate the visualization.

5.2.3 Deixis. The total count of deictic phrases was made for each
trial. The counts for 220 trials were analyzedwith a paired t-test, and
showed a small, but significant change across modality (t(109)=-2.57,
p=0.0116, |d|=0.286). The same test was run on the spatial deictic
phrases, and showed a similar change across modality (t(109)=2.04,
p=0.0438, |d|=0.252). When normalized for time (deictic phrases per
minute), the significant change in deictic phrases across modality
disappeared (t(109)=-1.52, p=0.131, |d|=0.160), but the significant
change in spatial deictic phrases persisted and increased slightly in
effect size (t(109)=3.18, p=0.00193, |d|=0.356).

5.3 Non-verbal Communication
5.3.1 Quantity. The total count of gesture events was made for
each trial. The counts for 220 trials were analyzed with a paired
t-test, and showed a large and significant change across modality

Figure 5: Example ParticipantAngles andDistanceOver Time

(t(109)=8.96, p=1.02 × 10−14, |d|=1.01). When normalized for time
(gesture events per minute), the significant change across modality
persisted and increased in effect size (t(109)=10.1, p=2.38 × 10−17,
|d|=1.24). Both changes showed an increase in gesturing in AR
compared to desktop; we thus fail to reject H1.

A paired t-test on the 180 trials where participants gestured
comparing the percentage contribution of each participant to the
total gestures showed no significant change across modality (t(89)=-
0.632, p=0.529, |d|=0.0898). This suggests the presence of the mouse
may have increased the total gestures, as the frequent use of the
mouse for gesturing was not counted.

5.3.2 Targets and Intent. Gesture events were aggregated in each
modality (desktop, AR) by target categorization (self, other partici-
pant, chart, background). A Goodness of Fit (G-Test) revealed the
proportions of each category varied significantly across modality
(p=5.61 × 10−17). The same test was repeated for the intent cate-
gorization (reference, description, adjust view, conversational) and
similarly found a significant change (p=3.58 × 10−44).

5.4 Overlapping Spaces
A simple exponential smoothing pass was applied to the raw loca-
tion data logged by each AR headset. This data was then sampled at
a rate of 2 samples per second. Because the location data depends on
participant movement, a time resolution much higher than this is
likely to introduce meaningless noise instead of capture intentional
movement. The angles for each participant as shown in Figure 3
were calculated, along with the distance between the participants
for each sample. An example of the output for one of the trials can
be seen in Figure 5. This process was repeated for each AR trial.

This output is then encoded into the three positional arrange-
ments in our proposed positional encoding method described in
Section 3.3: Same Space, Mixed Space, and Separate Space. Figure 6
shows a visualized example from one trial. The positional data is
graphed over time (left,) while the participant locations are graphed
relative to the study space in a top-down view (right). The three
highlighted colors each show one of the positional encodings. Same
Space (blue) corresponds to participants on opposing sides of the
visualization, (both participant angles below the threshold). Mixed
Space (green) corresponds to participants on the same side of the
visualization where one participant is between the other and the
visualization (one angle above and one angle below the threshold).
Separate Space (red) corresponds to participants on the same or ad-
jacent sides of the visualization (both angles above the threshold).
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Figure 6: The connection between participant angles and posi-
tional arrangements. Colored ranges (left) and corresponding
positions (right), showing the three arrangements.

The sampled positions at each time stamp were categorized
into positional arrangements using a threshold of 43.3 degrees, as
discussed in Section 3. The percentage of samples classified into
each arrangementwas then calculated for each trial, and the average
percentage was calculated across all trials. Overall, teams spent an
average of 34.7% time in Same Space, 28.2% time in Mixed Space,
and 37.1% time in Separate Space. The most time was spend in the
Separate Space arrangement, so we reject H5.

5.4.1 Looks. To assess how participants were shifting their focus
between the communication and task spaces, the total look events
for each trial was counted. The counts for 220 trials were analyzed
with a paired t-test and showed a significant change across modality
(t(109)=10.1, p=2.15 × 10−17, |d|=1.27). When normalized for time
(look events per minute), the change across modality persisted and
increased in effect size (t(109)=11.0, p=2.45 × 10−19, |d|=1.42).

5.4.2 Communication and Positioning. For each trial, totals of each
participant event (gestures, looks, and utterances) were counted
for each positional arrangement and then normalized for the time
the team spent in that arrangement. An single-factor ANOVA was
then used to compare the effect of positional arrangement on the
resulting frequencies (events per minute) of each type of event.

Participants gestured significantly more in Separate Space (F(2,
222)=3.54, p=0.0308) than either of the other two spaces (t(74)=2.09,
p=0.0404, |d|=0.295 compared to Mixed and t(74)=2.74, p=0.00756
|d|=0.420 compared to Same). We thus reject H2.

Participants looked at each other significantly more in Same
Space (F(2, 222)=8.31, p=0.000331) than either of the other two
spaces (t(74)=-4.48, p=2.70 × 10−5, |d|=-0.672 compared to Mixed
and t(74)=-2.42, p=0.0180, |d|=-0.364 compared to Separate).

Participants used significantly fewer utterances in Same Space
(F(2, 222)=6.59, p=0.00166) than either of the other two spaces
(t(74)=2.74, p=0.00774, |d|=0.455 compared to Mixed and t(74)=4.12,
p=9.75 × 10−5, |d|=0.583 compared to Same). We thus reject H4.

5.5 Subjective Measures
The feedback from the post-study questionnaire provides some
insight into how participants perceived working in each modality.

5.5.1 NASA TLX. Participants rated their experience with the desk-
top computer and the AR headset on a scale of 1 to 7 in the six
measures of the NASA TLX. Table 2 shows a summary of the t-tests
run on their responses for each measure compared across modality.

Table 2: Pairwise T-Tests for NASA TLX Survey Responses
Compared Across Modality

TLXMeasure Modality Mean (St. Dev) t-stat p-value

Mental
Demand

Desktop 4.85 (1.93) t(19)=
4.08

0.000642AR 3.45 (1.28)

Physical
Demand

Desktop 2.30 (1.66) t(19)=
-2.94

0.00843AR 3.30 (1.42)

Temporal
Demand

Desktop 4.10 (1.74) t(19)=
2.04

0.0554AR 3.45 (1.23)

Performance Desktop 3.75 (1.77) t(19)=
0.304

0.764AR 3.60 (1.90)

Effort Desktop 5.30 (1.66) t(19)=
5.87

0.0000182AR 3.40 (1.31)

Frustration Desktop 4.65 (2.30) t(19)=
4.95

0.0000898AR 2.45 (1.61)

The increased physical demand for AR is expected, as partici-
pants walked around. The decreased mental demand, effort, and
frustration in AR are all consistent with subjective observations.

5.5.2 Device Preference. An overwhelming 19 of 20 (95%) partici-
pants preferred the HoloLens to the desktop. 12 participants (60%)
explicitly mentioned navigation or manipulating the view in their
response. Five mentioned the HoloLens being more “fun” or “en-
gaging”. The participant who didn’t indicate always preferring
HoloLens said they preferred the Desktop for the network diagram
tasks, saying it was easier to coordinate with their teammate.

Feedback on ease of communication was mixed. 12 participants
(60%) said communication was easier on desktop, five (25%) said
HoloLens, and three (15%) said both equally. Participants who chose
the desktop explicitly mentioned ease of “pointing” and struggled to
verify they were referencing the same point in space as their team-
mate in AR. This suggests that pointers visible to both teammates
is critical to the success and ease of users’ collaboration efforts.

6 DISCUSSION AND CONCLUSION
The observed increase in gestures in AR (failing to reject H1), lack
of change in utterances across modality (rejecting H3), and par-
ticipants spending less than half of their time with overlapping
task and communication spaces in AR (rejecting H5) suggest dif-
ferent strategies for establishing a shared understanding between
collaborators are useful in AR compared to desktop.

Several factors support generalizing the results in this study. The
participant demographics show a range of ages, genders, education
levels, and familiarity with computers and AR headsets. We also
used a mix of three common visualization types and two primary
visual analysis task types. Additionally, despite the constrained
study size, many of our findings show strong statistical power.

6.1 Interface Design and Navigation
Differences in device preference from the NASA TLX could be at-
tributed to the different navigation paradigms between the desktop
and AR. The “natural” navigation afforded by ARHMD devices such
as the HoloLens lessens the gulfs of evaluation and execution [20],
and may explain the reported lower frustration and demanded ef-
fort in AR. Our choice of navigation paradigm represents common
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setups in industry but may limit generalizing some of the compar-
ative results between desktop and AR. Other desktop paradigms
(such as direct manipulation) should be compared in future work.

6.2 Communication
At first, the increased reliance on gestures in AR suggests that partic-
ipants were more confident their teammate shared the same view of
the task space when wearing the AR HMDs than when both looked
at the same desktop monitor. However, the small change in ver-
bal communication (utterances) in AR suggests that the increased
gestures were not taking its place; teammates communicated more
overall in AR by augmenting their verbal communication with ges-
tures. This is further suggested by the increase in spatial deixis ob-
served in AR. This, combined with the lack of increase in utterances
(even when normalized for trial time) suggests the communication
efficiency (deixis per amount of utterances) was higher in AR.

While not contradicting Kiyokawa et al. [26], these findings
do question the reasoning behind how AR impacts the necessity
of verbal and nonverbal communication between collaborators.
Further research on the content and purpose of both utterances and
gestures is needed, perhaps using the Inter-referential Life Cycle
model used by Chastine et al. [9] or a similar method used by Kraut
et al. [29]. The role each plays in teammates’ efforts to establish
conversational grounding may change between desktop and AR.

6.3 Positional Encoding
Participants spent the most time in the Same Space arrangement
and the least in Mixed Space on average across all trials, and com-
municated differently in each. Participants gestured and verbally
communicated more in Separate Space but looked at each other
more in Same Space. This suggests both arrangements, which in-
terestingly correspond to ones illustrated by Billinghurst et al. [5],
play different roles in collaboration efforts. Our positional coding
method provides quantitative evidence consistent with prior ob-
servations of participants moving to see the “exact view” of their
teammate to communicate better in AR [9], as well as reducing
3D tasks to 2D tasks while performing visual analysis in VR [8].
Participants moving to and communicating more while in the Same
Space arrangement suggest similar strategies in our study.

A subjective review of the trial recordings supports this. Same
Space was often present when teammates were discussing the visu-
alization as a whole or broad strategy or independently exploring
while Separate Space was often present while teammates referenced
specific parts of the visualizations or “synchronized” their views.
More work should be done on assessing the role these arrangements
play in facilitating different collaborative behaviors.

An interface implementing an overview-plus-detail design pat-
tern [44] bymixing linked 2D and 3D visualizations (a 3D “overview”
to provide context and allow participants to select and pop out de-
tailed 2D views from) may be useful in supporting these behaviors.
Making such a 2D detail view visible to all teammates would satisfy
some of the issues participants raised when discussing device pref-
erences (Section 5.5.2) that frustrated establishing conversational
grounding between teammates, however how such views can be
integrated for both participants in an intuitive and helpful manner
within an AR context remains an open research question.

The novel method for encoding positional arrangements outlined
in Section 3.3 provided a strong quantitative basis for identifying
these positional arrangements and correlating other encoded data
with them, and should assist in increasing the replicability of stud-
ies that use it. The method also provides opportunities for powerful
data visualizations to assist with the analysis of the associated data,
such as the one presented in Figure 6. Developing visualization
tools to assist researchers in quickly encoding the positional ar-
rangements based on this technique would be a good pursuit for
future work, as would expanding this technique to larger teams.

6.4 Study Limitations
Our proposed positional encoding method relies on three major
assumptions. First, we assume that all participants are viewing the
same, public scene of virtual objects; if an object exists for one user,
it also exists for the others, anchored in the same position in the
same space relative to the physical world. This is consistent with
prior work [5, 26], but still leaves out systems where users can
independently control private views of the visualization. Extending
our method to include such systems is left to future work.

Second, extrapolating participants’ views of their collaborator
and the visualization assumes participants faced nearly centered on
their calculated angle. A participant could, for example, face away
from both and thus be able to see neither. While a subjective review
of the trial recordings suggests this is a reasonable assumption
(participants generally faced either inwards towards the chart or
towards their teammate), combining more robust gaze and head
orientation tracking with our method is left to future work.

Third, we assume the interactive interfaces are part of the same
task space as the visualization itself. This assumption is made to
consider “seams” between the task and communication spaces con-
sistent with prior work [4, 23], but leaves out the possibility of such
“seams” existing between a decoupled visualization and interaction
tool (such as a remote or controller). Our study did not include
interaction; thus this assumption held. Exploring the validity of
generalizing this assumption is also left to future work.

Our user study is small (20 participants), but nearly double the
median size (12) of previously surveyed collaborative AR studies
[10]. Asmentioned in §4.5, our demographics gave confidence in the
representative nature of the study, and we chose a within-subject
study design (see §4.1) to increase the statistical power of our results
(consistent with the overwhelming majority of previous collabora-
tive AR studies [10]). Despite this, validating the generalizability of
our results would require a significantly larger study. Additionally,
future studies can expand on the types of tasks that are tested.

6.5 Conclusion
We present a novel method for encoding the positional arrange-
ment of pairs of co-located, synchronous collaborators using AR
HMDs. Our method adapts a previously-used method for the less-
constrained participant movements afforded by HMDs and in-
creases its study replicability by basing the encoding off of quanti-
tative data. We also demonstrated our method’s use in evaluating
collaborative visualization behaviors through a user study of col-
laborating dyads in AR. The results challenge prior assumptions
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about the role positioning plays in AR and show that our proposed
encoding method can help evaluate, visualize, and analyze this role.
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