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Figure 1: VECNA’s interface consists of six linked panels which support (A) selecting datasets and rendering options, (B–D) exploring and
comparing different dataset visualizations and reconstruction methods, (E) analyzing the data statistics and distributions of the datasets, and
(F) reviewing contextual signal to noise ratios across timesteps.

Abstract
Data-driven sampling and reconstruction techniques are increasingly being employed in scientific computing applications to
aggressively reduce data volumes while retaining the crucial features of spatiotemporal datasets. Such data must be recon-
structed for analysis, but it is difficult for domain experts to assess reconstruction quality, particularly given the pace at which
new methods are being developed and a lack of support in existing tools. To help address this, we introduce VECNA, a vi-
sual analytics system for exploring and comparing reconstructed scientific datasets. Developed through collaboration with
high-performance computing researchers, VECNA enables intuitive qualitative and quantitative comparisons among diverse
reconstruction methodologies. We validate VECNA via a usage scenario and empirical expert assessments to demonstrate
its efficacy in empowering users to discern nuances in reconstruction quality and identify regions of interest within datasets,
facilitating more informed subsequent analyses.

CCS Concepts
• Human-centered computing → Visualization systems and tools;

1. Introduction

Scientific simulations produce large volumes of data which create
bottlenecks in network communication and disk I/O [BDPA18]. An
increasingly prevalent strategy for addressing this congestion is to
employ aggressive (sometimes called extreme-scale) data reduction
techniques, which sample a very small subset (e.g., 1% or even
0.1%) of the data at a timestep for disk storage and post hoc analy-
sis [BDL∗21].

The necessary complement to sampling is data reconstruction,
which reconstructs the full resolution of the dataset while aiming to
preserve essential features [GBP∗20]. Unfortunately, for extreme-
scale sampling scenarios, this is a non-trivial task. The quality
of a sampling/reconstruction can be influenced by several factors,
such as the simulation type, sampling and reconstruction algorithm
parameters (e.g., sampling rate), and the presence or complexity
of specific subregions or features in the dataset. Moreover, there

© 2025 The Author(s).
Proceedings published by Eurographics - The European Association for Computer Graphics.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

DOI: 10.2312/evs.20251082 https://diglib.eg.orghttps://www.eg.org

EUROVIS 2025/ M. El-Assady, A. Ottley, and C. Tominski Short Paper

https://orcid.org/0009-0005-9628-8858
https://orcid.org/0000-0002-5535-4549
https://orcid.org/0000-0003-2430-815X
https://doi.org/10.2312/evs.20251082


2 of 5 A. Mishra, A. Biswas, & C. Bryan / VECnA

are now a variety of reconstruction methods available each with
their own tradeoffs in terms of quality, time complexity, and accu-
racy [GBP∗20]. Such confounds make it difficult for domain ex-
perts (e.g., scientists who perform data reduction and reconstruc-
tion in their workflows) to understand and compare reconstruction
methods, and also to identify optimum reconstruction strategies for
a given scenario. As such, several papers have highlighted a need
for adaptable frameworks to accommodate not only diverse sam-
pling and reconstruction pipelines [KH12, GBP∗20, BDL∗21], but
also for tools to provide oversight, review, and comparison for re-
constructed datasets and methods [GBP∗20, BMM∗24].

To help address this problem of reviewing and analyzing recon-
structed datasets during post hoc analysis, we introduce a visual
analytics tool called VECNA. VECNA facilitates the exploration
of various reconstruction methods for 3D/4D voxel datasets, en-
ables quantitative and qualitative comparison of reconstructed im-
ages, and provides tools for analyzing the reconstructed data. The
system is algorithm agnostic, and can support various state-of-the-
art sampling and reconstruction methods, including recent machine
learning driven reconstruction approaches [BMM∗24]. VECNA’s
design is based on a domain analysis and discussions with domain
experts who work in extreme-scale sampling and reconstruction,
and integrates several coordinated visualizations for examining sin-
gle and multiple time steps. Specifically, the tool is designed for
analysts who need to (i) compare multiple reconstruction pipelines
or parameter settings side-by-side, (ii) blend quantitative quality
metrics with qualitative inspection, and (iii) localize reconstruction
failures across space and time. To validate VECNA, we present a
use case and a set of expert review sessions, demonstrating its effi-
cacy as a focused tool for assessing reconstruction methods.

2. Related Work

Sampling and Reconstruction Approaches. Sampling methods
are widely used in the scientific and high-performance comput-
ing community to reduce the size of large-scale data sets; two
recent surveys include discussions of sampling and reconstruc-
tion methods [WH23, SZD∗23]. Efforts in extreme-scale sampling
have focused on optimizing the in situ sampling process for post
hoc analysis. For example, Woodring et al. [WAF∗11] proposed a
stratified random sampling based algorithm to enable downstream
interactive visualization tasks. More recent works by Biswas et
al. [BDL∗21, BDPA18] have proposed techniques that prioritize
important data features and gradient properties, ensuring the ex-
traction of important data features given a storage constraint.

Similarly, the reconstruction of volumetric data is also a focus
of study, particularly by the scientific visualization community.
While there are many “straightforward” algorithms available, such
as interpolation schemes based on Delaunaey triangulation, nearest
neighbors, and radial basis functions, other approaches have pro-
posed various machine learning methods to upscale or reconstruct
volumetric data [WCTW21, GYH∗20, HWG∗20, BMM∗24] (also
see Wang et al.’s survey on deep learning in scientific visualization
for a discussion on this [WH23]). Unfortunately, such methods pro-
vide little in the way of interactive tools to allow users to assess and
compare reconstruction quality.

Visual Analytics for Scientific Datasets. For analyzing large

3D/4D scientific datasets, tools like VisIt [CBW∗12], Par-
aView [par], Z-checker [TDG∗19] and Foresight [GBP∗20] repre-
sent mature applications that are widely used. In particular, Par-
aView represents a de facto standard for the community and is
widely used across simulation and computing domains. In con-
trast, Z-checker and Foresight primarily focus on analyzing com-
pression methods on scientific data. One drawback for these tools
is they are not optimized for reconstruction assessment. For ex-
ample, ParaView lacks streamlined side-by-side error overlays,
distribution-based comparison views, and timeline-linked metrics
that were considered essential for rapid, task-focused analysis in
our requirements analysis. This lack of a purpose-built tool was a
primary motivation for developing VECNA.

3. Design and Implementation

Requirements Analysis. VECNA was motivated by discussions
with scientific computing researchers and a meta-analysis of limi-
tations in current scientific visualization and analysis tools (includ-
ing ParaView, Z-checker, and Foresight), as well as recent papers
that discuss open issues for reconstructed spatiotemporal datasets
(e.g. [GBP∗20, BMM∗24]). Based on this process, we distilled a
set of four high-level design goals DG1–DG4:

DG1: Provide avenues for users to easily explore various
reconstruction methods. Because the number of reconstruction
methods is only increasing, users should be able to easily and inter-
actively import, explore, and compare across methods and datasets,
facilitating comprehensive analysis and informed decision-making.

DG2: Enable both quantitative and qualitative analysis. Two
reconstruction methods may yield visually similar outputs at first
glance, but it is imperative for users to discern differences not
only among the methods themselves, but also in comparison to
the ground truth. Therefore, tools should facilitate holistic assess-
ments, i.e., both quantitative analysis and qualitative inspection.

DG3: Support identifying regions of interest (ROIs). Com-
paring different reconstructed images can help users identify high-
level differences between various methods, but fine-grained anal-
ysis can help users identify regions where reconstruction fails (or
performs poorly). Such granularity can empower users to make it-
erative adjustments for subsequent downstream analyses.

DG4: Support temporal analysis. Scientific simulations are of-
ten complex spatially and temporally. Enabling users to navigate
through temporal snapshots enhances their understanding of recon-
struction methodologies and amplifies the contextual understand-
ing of their reconstruction methodologies. However, existing vi-
sualization frameworks and tools often do not facilitate the easy
time-varying analysis of datasets. Hence, tools should incorporate
seamless transitioning between timesteps, enabling users to delve
into exploration and analysis with ease.

The VECNA System. VECNA is designed to support DG1–
DG4 by allowing users to review, analyze, and compare recon-
structions of 3D/4D voxel datasets. Figure 1 shows the interface,
which is composed of six linked panels (A)–(F). The application in-
terface is primarily written in D3.js and VTK.js, build atop a web
server for data processing and handling. The codebase is available
at: Anonymized for submission.
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(a) FCNN (b) Delaunay
Figure 2: Using VECNA to examine how reconstruction error for
the Hurricane Isabel dataset (from a 1% sampling percentage) dif-
fers between FCNN and Delaunay triangulation methods.

(A) The Control Panel supports loading datasets, adjusting sam-
pling percentages for analysis, and editing colormap and transfer
functions. In addition, users can toggle the charts shown in the Data
Distribution Panel (E, described below), and apply slice operations
(which are uniformly applied across the visualization panels).

(B, C, D) To support DG1, visualizations of the dataset and its
reconstructions can be loaded into a trio of Image Panels. Users
can select the dataset for each panel (see (c2); options include the
dataset’s ground truth if available (i.e., the full resolution data),
showing the sample points only, and of the available dataset re-
constructions based on the methods that have been applied thus
far. For example, Figure 1 shows a visualization of the sampled
points (at a 1% sampling percentage) and two reconstructions: one
using a neural network and one based on interpolation using De-
launay triangulation. Each panel independently supports zooming,
panning, and rotating, and an error checkbox for each panel (e.g.,
(c1)) overlays the reconstruction error on the dataset (if applicable,
see Figure 2 for an example), supporting DG3.

(E) The Data Distribution Panel helps support DG2 by letting
users tab between three analysis charts. A distribution view (shown
in Figure 1(E)) aligns a small multiples plot of kernel density func-
tions mapping the scalar value distributions across the selected pan-
els (plus the ground truth, if available). Alternatively, users can
switch to an adjacency matrix or line chart (see examples in Fig-
ure 3). The matrix summarizes the pairwise distances between dif-
ferent datasets (we currently show Wasserstein distance, though
VECNA can supports other methods such as KL divergence), and
the line chart plots the signal-to-noise ratio (SNR) across available
sampling percentages for the datasets.

(F) Finally, the Timeline Selector panel shows how the SNR
(for the current sampling percentage) changes across simulation
timesteps for the shown reconstruction methods, and allows users
to click across the timeline to update the data that is shown in the
other panels (see (f1)). Line colors in this plot correspond to the
Data Distribution Panel’s line charts, and also to the colored circles
beside each dataset label in the header bar of the Image Panels.

4. Results

To help demonstrate VECNA’s utility, we first present a brief us-
age scenario, and then report an empirical evaluation conducted
with domain experts. For testing data, we use datasets generated

(a) Pairwise distances between Neural network and Delaunay re-
construction with Ground Truth

(b) SNR values over sampling percentages for Neural network
(pink) and Delaunay (blue) reconstructions

Figure 3: Examples of analysis metrics provided in VECNA.

from two well-known simulations: Hurricane Isabel [Har02] and
ExaAm [TBB∗22]. (Note that VECNA supports larger datasets:
we choose these due to their popularity as testing datasets in sci-
entific computing, and because they are representative of the types
of simulations that require aggressive sampling and reconstruction
while accounting for the presence and interactions of complex spa-
tiotemporal features.)

For data sampling, we employ a state-of-the-art value-based
sampling method introduced by Biswas et al. [BDL∗21]; for re-
construction, we include a number of reconstruction methods
that were recently studied in a reconstruction experiment pa-
per [BMM∗24], including simple interpolation using Delaunay tri-
angulation, weighted interpolation using pairwise distances, and
training a fully-connected neural network (FCNN). Like above, we
note that VECNA is flexible to supporting other types of sampling
and reconstruction methods.

Gary’s Usage Scenario. Gary, a scientific computing researcher,
wants to assess and compare various reconstruction methodologies
using a Hurricane Isabel simulation dataset, which simulates the
evolution of a hurricane off the coast of Florida, comprising thir-
teen attributes across 48 timesteps. He focuses on the pressure at-
tribute, which is a key indicator of hurricane intensity [Har02]. For
example, the hurricane’s eye (a low pressure zone) is depicted as a
prominent blue circle in Figure 1.

Gary’s work is shown in Figures 1–3. He begins by selecting the
1% sampling level and populating the three Image Panels. Clicking
the error checkboxes on the two reconstruction images (showing
Delaunay triangulation and FCNN results) overlays the error values
on the reconstruction datasets (Figure 2). He can immediately see
that Delaunay has more significant errors in the regions that trace
the Florida coast, compared to the FCNN. Looking at the Data Dis-
tribution panels, he can see that the neural network is significantly
more accurate compared ot the ground truth (Figure 3(a)), and that
this trend holds across SNR values at different sampling percent-
ages (Figure 3(b)). Further analysis across timesteps (not shown
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due to space constraints) confirms that Delaunay-based reconstruc-
tion consistently under-performs compared to the FCNN model.

Figure 4: (a) Example reconstructions of the ExaAM dataset by
FCNN (top) and Delaunay (bottom). (b) Error renderings of the
FCNN (top) and Delaunay (bottom) reconstructions. (c) Data dis-
tributions for ground truth, sampled data, FCNN, and Delaunay
reconstruction datasets; note how the sampling results in a differ-
ent distribution compared to the ground truth, but the reconstruc-
tions successfully capture (most of) the ground truth distribution.
(d) Pairwise distances between distributions of the ground truth
and reconstructed datasets.

Expert User Study. To further evaluate VECNA, we conducted
pair analytic sessions [AHKGF11] and semi-structured interviews
with three domain experts, denoted as e1–e3. The goal of this
evaluation was to better understand the benefits and limitations of
VECNA for assessment, analysis, and comparison of reconstructed
datasets and methods, and to learn how the system could be ex-
tended to better support their workflows in the future.

Expert e1 is a senior PhD student at Anonymized for submission;
e2 and e3 are staff research scientists at Anonymized for submission
with at least 5 years post-PhD research experience. All the experts
had 3+ years of experience working on the reconstruction of large
scientific datasets. One participant was also a co-author and one of
the primary developers of Foresight [GBP∗20].

Studies were conducted over Zoom. In accordance with pair an-
alytics protocols, a study administrator “drove” the system accord-
ing to the expert’s directions. Sessions lasted as long as each ex-
pert desired, who could switch between the Hurricane Isabel and
ExaAM datasets. After the pair analytics session concluded, each
participant were asked to provide freeform commentary and feed-
back on the system, such as what features they liked, disliked, and
found useful. Verbal feedback was qualitatively coded by the au-
thors to identify major themes and takeaways; below, we briefly
discuss four main ones.

An effective and focused tool for reconstruction analysis. All
three experts stated that the interface was a useful analytic tool
that would proactively help them to both qualitatively and quanti-
tatively assess reconstructed images. All participants remarked that
while they use commercially available tools (such as ParaView and
VisIt), they preferred VECNA’s focus in supporting the viewing
and analyzing the nuances of reconstructed datasets. For example,
e2 stated, “This interface would be such a great tool to use, I don’t
think I have seen any interface for our use cases before.”. Likewise,
e3 noted a lack of similar functionalities in ParaView, “[t]his inter-
face is really useful for people like us. It’s very difficult and kind of

unintuitive to do any kind of analysis on ParaView. This however
gets straight to the point.” In particular, viewing the reconstruc-
tion error (e.g., Figures 2 and 4(b)) was considered highly useful.
“Honestly, it’s harder to see any visible changes just from the re-
constructed images a lot of times and not just for these datasets.
The error rendering is pretty useful to check these differences out
as we don’t really care about every region being perfectly recon-
structed but just the important ones” (e2).

Analysis views provide deeper insights for reconstructed
data diagnosis. All three experts found the charts in the Data Dis-
tribution Panel a useful complement to the Image Panel’s 3D visu-
alizations. “The first thing I generally do is plot a distribution plot
of my reconstructions to see if there are any bugs, so I definitely
liked this view and the matrix view. It basically reinforces what I
just saw.” (e1). In particular, e2 and e3 found this panel particu-
larly useful when analyzing the ExaAM dataset (see Figure 4 for
examples of charts they created): “The distribution in the ExaAM
dataset is very interesting. The Delaunay reconstruction distribu-
tion looks pretty similar to the ground truth data distribution, but
it’s error rendering gives it away” (e2).

Timeline panel provided contextual analysis. Surprisingly, the
timeline panel was one of the most positively spoken of features in
the interface, particularly as a way to retain contextual information.
“The bottom timeline panel is the best thing about this interface. It
gives me an overview of SNR values right away” (e3). “Not a lot
of work has been done on sampling over time and generally just
doing it on a time instance loses contextual information and how
each time step is correlated to one another. So this SNR definitely is
good” (e2). All three experts suggested temporal analysis was an
area that could be expanded in the future (e.g., showing more than
just SNR values, or analyzing how errors evolve over time).

5. Discussion and Conclusion

This paper presents an initial design study on developing visual
analytics interfaces for interactive assessment and comparison of
reconstructed spatiotemporal datasets. Expert evaluations highlight
its advantages over tools like ParaView. The system is dataset and
method-agnostic, and we have future plans to incorporate addi-
tional reconstruction and sampling methods, while also expanding
the interface and its features, based on study feedback.

One potential limitation in the current paper’s evaluation is that
we test on two “modest” sized datasets (Hurricane Isabel and Ex-
aAM). While these are sufficient to validate the design goals and
UI/UX aspects of VECNA, they certainly do not match the scale of
simulations being run on today’s exascale architectures. Supporting
such datasets will require significant backend engineering, though
we intend to develop such capabilities as we mature and expand
VECNA’s codebase and enhance the user interface (for example,
by allowing users to manipulate the number of reconstruction pan-
els they wish to show). Ultimately, as we continue to move through
the exascale era, flexible and scalable visual analytics strategies
will be critical for effectively analyzing reconstruction pipelines.
VECNA provides a foundation for tackling these challenges, offer-
ing insights into how interactive, user-centric design can enhance
large-scale scientific data analysis.
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