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ABSTRACT

Analyzing social network data helps sociologists understand the
behaviors of individuals and groups as well as the relationships
between them. With additional ontology information, the seman-
tics behind the network structure can be further explored. Unfortu-
nately, creating network visualizations with these datasets for pre-
sentation can inadvertently expose the private and sensitive infor-
mation of individuals that reside in the data. To deal with this
problem, we generalize conventional data anonymization models
(originally designed for relational data) and formally apply them in
the context of privacy preserving ontological network visualization.
We use these models to identify the privacy leaks that exist in a vi-
sualization, provide graph modification actions that remove and/or
perceptually minimize the effect of the identified leaks, and discuss
strategies for what types of privacy actions to choose depending
on the context of the leaks. We implement an ontological visual-
ization interface with associated privacy preserving operations, and
demonstrate with two case studies using real-world datasets to show
that our approach can identify and solve potential privacy issues
while balancing overall graph readability and utility.

1 INTRODUCTION

With recent advances in information technology and social net-
working platforms, person-to-person interaction data is now widely
collected and readily available. Domain researchers such as sociol-
ogists use this data to better understand the behavior and interaction
patterns within and between populations. One way to present and
analyze this kind of data is with an ontology graph, which specif-
ically denotes the different types or categories (i.e., ontologies) of
nodes within the graph. In this way, the semantics associated with
a social network can then be better understood [23].

Network visualization can effectively show the complex rela-
tional concepts contained in this type of data. Unfortunately, the
existence of categorical groups, data extremas, and set intersec-
tions can allow for nefarious and potentially hostile attackers to un-
cover, either directly or indirectly, a specific individual’s personal
information; this knowledge can then be leveraged for ulterior in-
tents. Studies have shown that sensitive information in a social net-
work can be de-anonymized purely by analyzing its topology with
some auxiliary information, e.g. node degree, thus violating the
privacy and anonymity of its members [2,20]. When a social scien-
tist wishes to prepare a graph visualization for sharing of findings
(either with colleagues or to the general public), s/he may inadver-
tently expose sensitive personal details that reside in the data.

With these concerns in mind, privacy preservation approaches
have been developed which prohibit data mining techniques from
being able to identify individuals in social networks. These mostly
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operate at a data- or algorithmic-level (and are mostly designed for
non-ontological data schemas). In contrast, little effort has been
put forth in the field of visualization, which places an emphasis on
perceptual-based discovery, analysis, and cognition, and allows for
a graph builder to interactively decide which data elements can be
considered salient (and which privacy leaks can safely be ignored).

In this paper, we discuss privacy issues that arise when visualiz-
ing ontological networks using graphs and adjacency matrices. To
detect privacy leaks in networks, we leverage relational data mod-
els. These have an advantage over purely topological models in that
they emphasize the categorical types of connections between nodes
in the data (i.e., between the different ontologies). Using these mod-
els (specifically, k-anonymity [25] and l-diversity [19]), we show
how to detect leaks and suggest graph augmentations that “fix” de-
tected leaks; these mostly operate at a data-level in that they modify
the actual topology of the graph. We also discuss how leaks can
be perceptually mimimized (i.e., modifying the appearance of the
graph to cognitively “mask” the leak’s appearance) in cases when a
data-level augmentation is not the most favorable option.

To assist with choosing the appropriate corrective actions, we
suggest strategies based on the type of leaks that are detected in
conjunction with the set of nodes and/or edges they affect. Based
on these, we develop an interactive prototype system for ontological
network visualization building and privacy preservation. Its work-
flow is straightforward: (1) Find leaks in the graph. (2) Perform
augmentations to obfuscate or alleviate the issues. (3) Refine the
look of the graph to remain suitable for presentation.

By letting a user iteratively build and anonymize an ontologi-
cal graph visualization, s/he can intuitively balance between pri-
vacy and utility (that is, semantic readability) both before and after
privacy operations are performed on it. This lets the user ensure
important leaks are either removed or minimized, while maintain-
ing an end result that is still suitable for presentation. To evaluate,
we demonstrate two case studies showing how the discussed tech-
niques work in a privacy preserving, graph building process. Feed-
back from interviews with sociologists who work with sensitive,
social network datasets is also discussed.

2 RELATED WORK

Prior related work can be discretized as such: (1) privacy preser-
vation for network data, (2) ontology-based network visualization,
and (3) generalized privacy preserving visualization techniques.

2.1 Preserving Privacy in Social Network Data
The problem of privacy preservation has been extensively studied
in the data mining field. For relational data in particular, prior re-
search has established notable generalized anonymization models
such as k-anonymity [25] and l-diversity [19]. These serve as a ba-
sis for many network data mining approaches, though some include
a focus on leveraging other topology metrics such as node degree,
neighborhood information, shortest path, edge weights, and entity
grouping [4, 6, 18, 35, 36].

A survey by Zhou et al. [37] notes two commonly-used
anonymization techniques, i.e., procedures that can transform a pri-
vacy leaking graph into one that is privacy preserving: (1) merging
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(a) Example Ontology Schema (b) Showing with Node-link Diagram (c) Showing with Adjacency Matrix

Figure 1: Illustrating a synthetic, ontological social network of eleven researchers affiliated with a university lab. (a) Based on an example
schema, entities are of type [Person], and connections between them show [Collaboration]. There are three types of demographic attributes:
[Location], [Age], and [Title]. (b) The data can be laid out in a force-directed graph. Each [Person] node has an edge to its respective set of
attribute nodes. (c) The network can alternatively be shown in an adjacency matrix.

nodes/edges and (2) adding/deleting nodes/edges. We leverage both
actions in this paper. Node merging is also used by [31] and [34] as
a way to achieve l-diversity; the latter additionally considers graphs
with multiple types of edges, which can be deleted based on their
ontology. Similar to our merging approach, Hay et al. [13] present
a generalization technique that groups individual nodes into “super-
nodes” and edges into “super-edges” to address k-anonymity.

Randomization is another approach to preserving privacy, in
that random node/edge deletions/insertions can inject a measure
of uncertainty (and potential dis-truthfulness or error) into the data
[14,17]. Similarly, edge swapping randomly replaces endpoint con-
nections [32], and noise nodes add additional elements to the dis-
play [30]. Though these techniques have been used in the sociology
community when presenting sensitive social networks, the false in-
formation introduced might be costly (see Section 7.1). Therefore,
we do not consider randomness as a viable approach in this paper.

A constraint to many of these works is that they achieve graph
anonymity purely via theoretical approaches and solely modify the
graph at a data-level, sans user discretion. In a visualization con-
text, more nuance may be required; a graph designer can interac-
tively consider how a privacy leak should be dealt with or whether
a privacy leak may be allowed based on its context. Instead of re-
moving the leak at a zero-tolerance level (i.e., by an action like node
merging or randomization), it sometimes may be more desirable to
perceptually minimize the visibility of a leaking node. While still
existing at a data-level, it is hidden from easy recognition. Addi-
tionally, when building a graph for presentation, the semantics of
the network must be taken into account. The chart should commu-
nicate appropriate insight to the viewers. Few prior papers discuss
these aspects of visual reasoning when a dataset is analyzed.

2.2 Ontology Graph Visualization
Visualizing heterogeneous social networks with ontology informa-
tion is an effective technique for social network analysis. For ex-
ample, Shen et al. [22,23] use ontology information to semantically
prune or reduce the size of inherently large and complex networks.
This makes the task of inferring important relationships and reveal-
ing hidden knowledge within a graph more manageable. At a cog-
nitive level, Oellinger and Wennerberg [21] point out that a major
advantage of included ontology information is the deployment of
inference mechanisms and the possibility to extend and refine the
network with further (sub)concepts.

Many recent visualization papers have looked at improving read-
ability in ontological graphs. These include specialized layouts
based on domain ontology models to emphasize social structure
[27, 28], grid-based displays to emphasize edge saliencey [26],
force-directed displays that leverage information about node degree

distributions [16], and node modification strategies such as merg-
ing to aggregate hierarchical nodes [24], representing ontology-
based cliques (or clusters) with adjacency matrices [1], and adopt-
ing mixed-initiative approaches that allow both automatic force lay-
out with additional manual adjustment [33]. This last paper is sim-
ilar to our approach, in that our system allows a user the ability to
apply different graph layout settings and then tweak, pin, and drag
individual nodes to achieve a desired look and positioning.

2.3 Privacy Preserving Visualization

Recently, privacy preservation has received increased emphasis
in the visualization community. Examples include applying k-
anonymity and l-diversity to parallel coordinates [7], investigating
privacy issues in event sequence datasets [5], and discussing oppor-
tunities and challenges for privacy preserving visualization in the
realm of electronic health record data [8]. In general however, sup-
porting visual analytics tasks on various types of privacy-sensitive
data is lacking, and should be further investigated.

3 VISUALIZATION OF ONTOLOGICAL SOCIAL NETWORKS

This section formally defines ontology networks and how they can
be plotted with node-link diagrams and adjacency matrices. We
discuss layout considerations for both chart types, and how differ-
ent approaches to plotting ontological data (node-link diagrams vs.
adjacency matrices) can affect the perceptual readability and se-
mantical understanding with regards to the underlying data.

For clarity, the terms node and vertex are used interchangeably
for node-link diagrams. Cell is used for adjacency matrices. The
term entity has a special connotation; it is the main ontology-type
for the graph. Since this paper focuses on social networks, an entity
then always refers to a person. To ease the discussion and reduce
potential confusion, we consider the edges or connections of the
datasets mentioned in this paper to be undirected.

3.1 Defining Ontological Social Network Data

We define ontology graphs following the notations in [22, 23]. Let
a network graph be denoted as G = (V,E,vt,et) and its associated
ontology information defined as OG= (TV ,TE). V and E are the set
of vertices and edges in the graph, respectively. TV = {t1, t2, ..., tm}
is a set of categorical vertex types and TE = {(ti, t j) : ti, t j ∈ TV } is a
set of edge types. vt denotes a mapping from V to TV that associates
a vertex to its type. That is, for a vertex v in the graph, vt(v) refers
to the type of the vertex v. Similarly, et denotes a mapping from E
to TE that associates an edge with its type.
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3.1.1 Organizing Ontology with a Schema
In a sense, an ontological social network can be considered as a
basic, person-to-person network that has been augmented with the
addition of attribute-specific types of nodes that are linked to the
initial set of person-based nodes. The ontology information of a
social network (OG) explicitly specifies the nature of entities and
relations that exist in this modified or enhanced network.

The allowable connections in a social network can be defined
by a schema. Figure 1(a) shows a schema for a synthetic net-
work of eleven researchers plotted in Figure 1(b-c). This exam-
ple schema defines four types of nodes: [Persons] (which are the
entity nodes), [Locations], [Ages], and [Titles] (the latter three are
attribute nodes). Edges between nodes of differing ontologies show
a type-specific relationship between the nodes. For example, a
[Person]-to-[Location] edge signifies where the person works. De-
pending on the graph’s contextual rules, a node may have a one-
to-one, one-to-many or even many-to-many relationship with other
nodes. For example, a person can only be at one [Location] at a
time, but a location can have many [Persons] working there.

An edge that traverses two vertices with the same ontology can
be used to show mutual connection. In the schema, a yellow
edge connecting two people indicates they collaborate together. If
the schema includes hierarchical ontologies, this can be shown by
edges between attribute nodes of the same type [24]. (Figure 1(a)’s
schema does not include this.) For example, if larger, “city-level”
[Location] nodes are included in the dataset, an edge from a work-
specific to a city-level [Location] would indicate the next-level up
in the locational hierarchy.

3.2 Visualizing Ontological Social Network Data
The two most common techniques for visualizing social networks
are with graphs (e.g., node-link diagrams) and adjacency matrices.

It is straightforward to augment node-link diagrams to include
ontological information, as shown in Figure 1(b). Based on schema
swatches, color differentiates ontologies. The color of a node maps
to its type, and the color of an edge maps to the relationship ontol-
ogy between its endpoint nodes. (Alternatively, though node/edge
channels such as shape, alpha, and transparency can instead be used
to show ontology attributes, this limits the scalability of attributes
that can be shown.) Here, people are shown as blue nodes; yellow
edges show their collaborative relationships. Green nodes show the
location where a person works; green edges connect each person
node to their location. Similarly, purple and orange nodes/edges
identify age groups and job titles.

A common alternative to node-link diagrams are adjacency ma-
trices (Figure 1(c)). While a traditional social network (sans ontol-
ogy) with n people can be represented by an n×n matrix, to include
ontological information extra columns must be added. The dimen-
sions of the resulting matrix becomes n× (m+n) where m denotes
the number of ontology types in the network. Similar to node-link
diagrams, cell color can indicate connection value and ontology be-
tween two nodes.

3.3 Improving Ontology Visualization Readability
Successful visualization should allow viewers to effectively per-
ceive, analyze, and interpret an underlying dataset and its salient
features. There are several considerations for this in the context of
ontological social networks; we consider three primary ones: (1)
choice of graph layout (i.e., positioning nodes to emphasize certain
semantics), (2) use of edge bundling (alleviating clutter by bending
edges together), and (3) matrix row/column reordering (to highlight
patterns or groups within the data).

3.3.1 Iterative Ontological Graph Layout
For ontological node-link diagrams, force-directed layouts are fre-
quently used [22, 23, 27, 28] due to their simplicity, flexibility and

(a) Initially showing [Person] and [Title]
nodes, there are three clusters.

(b) Adding [Age] nodes and [Collabora-
tion] edges.

(c) Adding [Location] nodes to the view. (d) Edge bundling highlights age distribu-
tions for each cluster.

(e) Matrix ordering by [Collaboration]
connections.

(f) Matrix ordering by [Title] and [Age]
values.

Figure 2: Techniques for allowing ontological semantics to be more
easily perceivable. (a)-(c) Iterative graph building by adding nodes
and edges. (d) Edge bundling. (e)-(f) Matrix reordering.

generally pleasing results. However, naive implementations usually
do not consider node ontologies. This can make it more difficult to
interpret the semantical relationships between multiple entity and
attribute nodes. Figure 1(b) shows this, as nodes are placed to min-
imize all edge lengths without considering their ontology types.

One solution to this issue (adopted both by [33] and our proto-
type system) is to use a mixed-initiative approach. An automatic
layout determines placement for an initial set of nodes and edges.
The user then refines the graph through multiple, successive stages
of adding nodes/edges, filtering out undesired ones, and tweaking
their placements by dragging and pinning nodes. A key benefit to
this approach is flexibility– the user can optimize the graph presen-
tation to highlight its semantics, especially when multiple attributes
of the network are presented at the same time.

This approach also gives full control over which specific onto-
logical attributes from a datset should be included for display. Only
necessary information is presented, which reduces graph clutter.
While iterative refinement of a large graph in this way can lead
to scalability issues, effective use of data clustering, layouts, and
semantic/structural filtering can help address this, see [16, 23]. A
thorough discussion of this topic, however, is beyond the scope of
this paper.

Figure 2(a)-(c) demonstrates the iterative building process used
in our prototype system. Upon loading the initial dataset (the same
as in Figure 1), only blue [Person] and orange [Title] nodes are
displayed. (a) These nodes are arranged to show the three distinct
groups in the data and pinned to the display. (b) Next, purple [Age]
nodes are added, along with yellow [Collaboration] edges. (c) Fi-
nally, green [Location] nodes are added. At each stage nodes are
arrayed according to the user’s preference for highlighting certain
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data semantics. New nodes are positioned using force-direction,
and can then be pinned or adjusted.

3.3.2 Edge Bundling

To improve legibility, edge bundling is an aesthetically pleasing
technique that simplifies graph complexity and better shows the
structure or patterns that edges can have [15]. Edge bundling al-
gorithms reduce visual clutter by pulling adjacent edges together,
transforming them from straight lines into curved splines that fan
out near the termini of their respective nodes. While edge bundling
was originally introduced as a way to group node sets together in
hierarchical data graphs (i.e., bundling edges together at each hier-
archy level), the same concept can be extended to categorical edge
types found in ontology data. For example, Figure 2(d) shows a
continuing example from Figure 2(a)-(c), where the edges for pur-
ple [Age] nodes have been bundled together for different clusters.

3.3.3 Matrix Reordering

Row and column order of an adjacency matrix can intuitively
show high-level data patterns, such as clusters or highly-connected
nodes [3]. This ordering benefit becomes more prominent for larger
and denser networks. Figure 2(e) shows rows and columns ordered
by collaboration links between people. Compared to Figure 2(f),
it is more straightforward to see that Bob (the first row) is highly
collaborative with others while two people (Sue and Zoe) do not
collaborate at all.

Ordering can also be done based on ontology attributes. Fig-
ure 2(f) reorders the matrix by [Title] groups, which highlights the
three clusters of people similar to the graph layout in Figure 2(a).

4 PRIVACY CONSIDERATIONS IN ONTOLOGICAL SOCIAL
NETWORK VISUALIZATIONS

Here, we describe how two privacy models that are commonly used
in relational data mining can be leveraged to identify privacy leaks
in ontological social networks. To “fix” a detected leak at the data-
level, graph modification operations that change the topological
structure of the graph or matrix are applied. In some cases, these
actions are not always the most favorable solution. An alternative is
changing the appearance of the visualization in a way that percep-
tually “hides” a leak. While still present in the graph, it becomes
harder for a viewer to perceive at the cognitive level. Based on
the types of leaks that are found and the sets of nodes/edges that
they affect, we recommend strategies for automatically performing
graph modification actions.

4.1 Privacy Models for Ontological Social Networks

At a data-centric level, prior studies have introduced various
anonymization techniques for social network data. Unfortunately,
defining what should be the standard or best practice for privacy
leak detection remains an open question. Multiple researchers [20,
29, 31, 37] have emphasized the impracticality of expecting one
single anonymization approach being able to address all forms of
privacy issues, or even being able to catch and preserve all leaks
within a network: “Generally, graph data is sufficiently complex
that it is impractical to prevent all forms of disclosure with a single
anonymization approach.” [31] Because of this, one must make as-
sumptions about what types of leaks are important and thus worth
fixing, based on the context of the data.

The issue is further complicated when ontology is considered, as
many social network approaches do not consider nodes and edges
of differing types. While certain ontology types may be considered
sensitive, that is, able to expose the privacy of a particular entity
node (person) or wished to be kept hidden, others ontologies may
not be. Even within sensitive ontology types, specific nodes may
not be regarded as sensitive.

Based on these assumptions, privacy detection approaches de-
signed for relational data (as opposed to only social network data)
can be leveraged and applied in the new context of ontological
social networks. There are two relational-based privacy models
that are particularly apt for this process: k-anonymity [25] and l-
diversity [19], which we discuss here, though other social network-
specific approaches can also be used (see Section 7.2).

4.1.1 Defining k-anonymity and l-diversity

Formally, k-anonymity is defined such that each equivalence class
contains at least k records, therefore any single record in the
same equivalent class cannot be distinguished from the other k−1
records. Applying this in an ontological social network context,
an equivalence class is formed by a group of entity nodes who are
linked to a single or a set of common attribute nodes.

For example, in Figure 1(b), there is only one [Person] (Jim)
linked to the Off-Site [Location]. Jim’s 2-anonymity is violated
(since less than two people are connected to Off-Site). If an at-
tacker then knows that Jim works at Off-Site, s/he will also know
Jim’s [Age] (Over 28) and [Title] (PhD), thus Jim’s privacy has
been entirely compromised.

l-diversity extends the concept of k-anonymity by requiring the
records contained in each equivalence class to obtain at least l dif-
ferent sensitive attributes. In Figure 1(b), both Bob and Pam are
linked to the PostDoc Researcher [Title] node. This satisfies 2-
anonymity criteria, but violates 2-diversity, as both Bob and Pam
also are linked to Campus [Location] and Over 28 [Age]. Since
they both share the same job title, and because their other attributes
map similarly, it can be identified that a PostDoc researcher in the
graph is definitely located at the Campus and is over 28 years old,
violating both Pam and Bob’s privacy.

4.2 Privacy Preservation Actions

To resolve k-anonymity and l-diversity privacy leaks, we consider
three types of graph modifications: (1) node/edge deletion, (2) node
merging, and (3) edge bundling. These actions change the topologi-
cal structure and the underlying data representation of the node-link
diagram (and the adjacency matrix) in a way that removes the leak
at a data-level. Unfortunately, as this reduces the overall utility
of the visualization, it means that each action has a cost associ-
ated with it. In discussing this, we use a five person sample dataset
shown in Figure 3 (using the same ontology schema as Figure 1(a)).

4.2.1 Node and Edge Deletion

In a node-link digram, deleting a node removes it and the edges
linking to it. Deleting an edge similarly removes a connection be-
tween two nodes. The equivalent deletion action in an adjacency
matrix removes the appropriate row/columns. If the node is an en-
tity (that is, a person), then both a row and a column is removed. If
an attribute type of ontology node is removed, only a column needs
to be removed. Deleting an edge in an adjacency matrix removes
only that particular cell’s value.

Node deletion is a particularly effective operation to use when
a privacy leak is “isolated” or independent of connections to many
other nodes. For example, in Figure 3(a), there is only one [Per-
son] node (Dave) who is a Rookie. If the graph is presented with
personal names hidden, but an attacker already knows Dave is a
Rookie, then s/he can derive Dave’s other (potentially sensitive) in-
formation (i.e., he is an Engineer who’s workplace is Home).

Deleting the Rookie node fixes this isolated privacy leak. How-
ever, this type of operation should be applied with caution, as it
removes information entirely from the graph as opposed to merely
introducing uncertainty through obfuscation.
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4.2.2 Node Merging
Node merging combines two or more nodes into a single “super-
node.” Edges connected to these nodes are now aggregated to the
new node, while edges going between the merged nodes are hidden
(inside the super-node). In conventional node-link diagrams, this
technique is often used to organize nodes according to a data hi-
erarchy, especially in the context of graph simplification (reducing
node/edge density) and interactive exploration [10].

Considering privacy, a merged node obfuscates privacy leaking
information by adding uncertainty to the set of merged nodes. A
viewer is unable to tell which edges connecting to the super-node
go to which specific node inside. However, care must be taken if
nodes of different ontologies are allowed to be merged, as edge
types and/or weights can vary. In our current prototype system (see
Section 5), we restrict node merging to sets of the same ontology
and with the same edge weight.

Node merging is especially suitable for addressing k-anonymity
leaks, which are caused by insufficient node degree (the node de-
gree is smaller than the value of k). The visual effect of node-
merging in an ontological network is the same as in a conven-
tional node-link diagram (see Figure 3(b), where the privacy leak-
ing Rookie node is merged with the 1+yrs node to fix a k = 1-
anonymity leak). For an adjacency matrix, when nodes are merged
their columns are also merged. In our system, we expand the size of
the columns corresponding to the number of merged nodes to help
indicate the merged node’s aggregated size (Figure 3(c)).

4.2.3 Edge Bundling
Edge bundling as a readability-improving and clutter-reducing tech-
nique is discussed in Section 3.3.2, but it can also be purposed
to preserve privacy. Tight visual bundling obfuscates the specific
source and destination end points for a set of edges between two
groups of nodes. This prevents a viewer from telling where the
nodes from one group specifically go to in the other group. In Fig-
ure 3(d), a set of [Person] nodes have their edges bundled going to
green [Location] nodes. It is apparent that each person is attached
to a location, but a viewer cannot tell which explicit location they
map to (either Lab or Home). The adjacency matrix shows edge
bundling by duplicating cell values, with half-opacity denoting the
uncertainty of the bundled edges.

Edge bundling is particularly suitable for addressing l-diversity
leaks which can be caused by having certain sets of edges linking to
the same source and destination nodes. In Figure 3(a), a 2-diversity
leak happens because both Charles and Alice work at the Home
[Location] and have 3+yrs of work [Experience]. If node merging
is applied to combine the Home and Lab nodes (Figure 3(c)), then
the Dave node’s working location is obscured. Instead, by edge
bundling the set of edges in Figure 3(d), enough information is
obfuscated to fix the specific privacy leak while keeping other edges
intact so that their patterns can be preserved. The information that
Dave’s working location is Home [Location] is still preserved while
the information of other nodes’ working locations is obfuscated.

4.3 Perceptually Masking Privacy Issues
Although privacy leaks can be computationally detected at a data-
level, zero-tolerance graph modification actions may not always be
the best desirable solution. For example, removing and aggregat-
ing too much information from the graph or adjacency matrix can
reduce its overall usefulness. An alternative choice then is to per-
ceptually minimize (that is, to hide) existing leaks from easy iden-
tification by a viewer.

In node-link diagrams, edge crossings, naive node placement,
long edge lengths, and node/label overlapping make graphs less
readable and thus more difficult to interpret. This goes directly
against improving the readability of a visualization, as discussed
in Section 3.3, but paradoxically can serve to mask privacy leaks

(a) Showing the initial dataset of five people.

(b) The Rookie and 1+yrs nodes ared merged together.

(c) The Lab and Home nodes are merged together.

(d) Edge bundling [Person] nodes connected to the Lab and Home nodes.

Figure 3: Privacy preserving operations: (a) The original dataset.
(b) Applying a node merge to address k-anonymity. (c) Applying
a node merge to address l-diversity. (d) Edge bundling to address
l-diversity.

by making it harder to isolate nodes or entity combinations that are
sensitive and exposed. For example, Figure 4(a) and (b) shows two
different layouts for a dataset. We highlight a privacy leak in these
two respective layouts in Figure 4(d) and (e). In Figure 4(e) the two
highlighted person nodes are positioned in a way that their con-
nections are “shielded” by clustering with other nodes. The edges
that lead to the privacy leak heavily overlap with other, non-privacy
leaking edges. In contrast, in Figure 4(d), the connections (and thus
the privacy leak) for these two persons are easily identifiable: two
Senior Grads who live in MIT both go to the hangout place Friends,
more easily– a leak that violates 2-diversity.

When considering the perception of privacy issues in ontologi-
cal adjacency matrices, the biggest perceptual cue for a viewer is
the arrangement, sparsity, and the dispersity of the cells that expose
sensitive information. This is a result of the row/column ordering of
the adjacency matrix, as Section 3.3.3 notes. Reordering the rows
and columns of an ontological adjacency matrix can reduce the dis-
persity of certain cells and more clearly indicate certain relation-
ships or semantics between the sensitive cells, but at the same time
make certain patterns more scattered and harder to reason. In Fig-
ure 4(c) the privacy leaking cells are placed on successive rows in
the matrix which makes the privacy issue easier to spot. The same
privacy issue is highlighted in Figure 4(f), but is perceptually more
difficult to recognize as the offending cells are now in rows that are
far apart from each other. As a result, row and column reordering
should be carefully done in a way that balances exposing patterns

15



(a) Leak-Exposing Layout (b) Leak-Masking Layout (c) Leak-Exposing Row Ordering

(d) Leak-Exposing Layout, Leak Highlighted (e) Leak-Masking Layout, Leak Highlighted (f) Leak-Masking Row Ordering

Figure 4: Graph layouts and matrix ordering affect privacy perception. All six plots show the same dataset, which contains the following
privacy leak: two Senior Grads who live at MIT both hang out at Friends, a 2-diversity leak. (a) and (b) show two layouts of the graph with
the leak unmarked (graphs (d) and (e) show the same layout with the leak highlighted). In (a), the leak is more visually perceptible, while
in (b) it is hidden by line clutter and node positioning. In (c), the matrix row ordering places the leak-causing nodes by each other, allowing
easier recognition as opposed to (f), where they are placed far apart in the set of matrix rows.

within the data while minimizing exposure of non-essential privacy
leaks.

Perceptual hiding of leaking nodes is one advantage of the
mixed-initiative graph building approach (discussed in Section
3.3.1). However, while masked at a presentation level, the leaks
will still exist in the underlying raw data. Additionally, even with
access only to the graph visualization, a malicious attacker might
still potentially uncover the leaks by meticulously inspecting and
recording the relationships between nodes, edges, or cells that are
of interest. While visual clutter in graphs is especially helpful, in an
adjacency matrix there is no corresponding form of “cover,” which
makes heuristic approaches easier to apply (such as computer vi-
sion algorithms) for the purpose of reconstructing the underlying
data from the visualization.

4.4 Strategies for Preservation Operations
We now discuss recommendations for applying privacy preserving
actions to leaking sets of nodes and/or edges. These can help a
graph builder to decide which type of graph modification operation
should be taken, based on the leak type and what kind of nodes and
edges are involved.

As mentioned previously, node and edge deletions result in in-
formation loss and should be used with caution. We do not con-
sider this type of action as a viable strategy unless the node or edge
can safely be deleted because a priori it does not add value to the
chart (thus it can be deleted anyways). Succinctly put, we adopt
two strategies for graph builders: Node merging is more suitable
for addressing k-anonymity leaks, while edge bundling is better for
l-diversity leaks.

Thus, the first step of choosing a privacy action is to identify

the type of leak, done by applying the definitions in Section 4.1.1.
Next, the user should determine a set of nodes and edges that will be
affected by the privacy action. As a node or edge may be involved
in multiple privacy issues, resolving one issue can potentially fix
others. Our strategy for selecting the nodes and edges to be involved
in the privacy action is to maximize the number of issues can be
solved via a single operation.

For example, if a privacy leaking node is violating k-anonymity,
we first collect all other nodes in the graph having the same ontol-
ogy type as the offending node. Among these nodes, we choose the
one with the highest number of k-anonymity privacy issues to be
merged with the originally selected privacy leaking node. If mul-
tiple nodes having the same number of k-anonymity leaks, we de-
fault to the one with the smallest degree. Although merging the
offending node(s) with any other nodes in the graph solves the k-
anonymity leak, by defaulting the merging to use the most egre-
giously leaking node, more overall leaks in the graph are resolved.

For an l-diversity leak, we retrieve all other edges that share the
common ontology types as the privacy leaking edges (i.e., their end-
point nodes are the same types). These edges are grouped according
to the ontology nodes that they link to. We count the number of l-
diversity leaks that the edges violate at the group-level and choose
the group with the most l-diversity leaks. Excluding any edges that
do not have their own l-diversity leaks, the remaining edges are
bundled with the privacy leaking edges. If multiple groups have the
same number of l-diversity leaks, we default to the group with the
fewest edges in it.

Our prototype system uses these schemes to recommend graph
modification actions for leak fixing, but we allow for flexibility and
leave the final decision-making to the user. Depending on the con-
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Figure 5: (A) Our system displays the loaded dataset and allows a number of interactions, such as (B-C) modifying graph display settings
and (E-H) modifying the graph topology itself. (D) To resolve privacy issues, the user can review a list of detected leaks and choose a desired
course of action.

text and the information semantics, a graph builder might have dif-
ferent considerations on how a privacy issue should be handled. For
example, a different action than the default recommendation may
be chosen to fix a leak (merging a different set of nodes, etc.), or
the leak can instead be perceptually masked by updating the graph
layout.

5 PROTOTYPE SYSTEM

We have implemented a prototype system for building ontological
social network visualizations and performing privacy preservation
actions. The system includes graph and matrix viewers with a num-
ber of system actions as shown in Figure 5. To create a privacy pre-
serving visualization that retains its semantic utility, we follow an
iterative three-step workflow: (1) identify and review privacy issues
(Figure 5(iii)), (2) address privacy leaks as desired (Figure 5(ii),
(iv), and (v)), and (3) refine the look of the visualization (Figure 5(i)
and (ii)).

(A) Upon opening, the user first loads a dataset. The dataset
is viewable with both a node-link diagram and an adjacency ma-
trix, though their display can be toggled. Using sidebar controls, a
number of graph operations can be performed. (i) To stylistically
update the graph, (B) the user can edit the layout constraints and
(C) manually position nodes (and sort the matrix). (ii) If the user
wants to manually modify the graph’s topology, s/he can (E) merge
a set of nodes, (F) bundle a set of edges, (G) filter edges by ontol-
ogy type (or individually toggle an edge’s display), and (H) filter
nodes by ontology type (or individually toggle a node’s display).
Using these actions in conjunction with each other, a user can build
a graph to semantically emphasize certain aspects of the data. For
example, in Figure 2, the user starts out by filtering out all but two
types of ontology nodes. S/he then positions these nodes and pins
them to the display, and iteratively adds new ontologies until the
full dataset is shown.

To handle privacy leaks, the user (iii) invokes the “Detect Pri-
vacy Leaks” action. This examines the graph’s topology and ontol-
ogy information and generates a list of privacy leaking nodes and
edges. (D) The user can review this list, hovering over leaks with
the mouse. Doing so highlights the offending nodes and edges in
both the graph and the matrix. Clicking a leak toggles the “Recom-
mended Action” tab, which suggests a graph modification action
(either node merging or edge bundling) depending on the context

of the leak. To resolve the leak, the user can (iv) accept this recom-
mended action, (ii) manually modify the graph in some other way,
or (v) modify the graph’s layout and appearance to perceptually
mask the leak. (The leak can also be ignored, if deemed unimpor-
tant.) If the graph’s topology is updated, the list of privacy leaks is
refreshed (removing the fixed leak, and possibly others resolved by
the fix). If certain ontologies or sets of nodes can safely be ignored
(i.e., it does not matter if they are exposed or causing leaks), they
can be toggled as unsensitive in the sidebar, and will not show up in
the privacy leaks list. The user has the option to continue reviewing
and fixing other leaks as well as improving the semantics presented
by the visualization(s) until all the important privacy leaks have
been fixed and s/he is satisfied with the look of the to-be-presented
visualization(s).

6 CASE STUDIES

We demonstrate two case studies with our prototype system show-
ing how ontological graphs can be modified to preserve privacy
while still maintaining utility.

6.1 MIT Reality Mining Dataset
The MIT Reality Mining dataset [9] shows the communication,
proximity, location, title and activity information from 100 subjects
at MIT over the course of the 2004-2005 academic year. From this,
we extract activities that happened during the month of April.

Figure 4(a) shows a built node-link diagram of the data. Its node
layout has been arranged to emphasize different ontological group-
ings of people. For example, the green MIT and Boston nodes
are popular [Locations] to live. The purple Friends and Restau-
rant or bar [Hangout] places are popular for all groups. The cluster
of [Persons] that have Student [Titles] are most sociable with per-
sons who are either New Grad or MediaLab, while Sloan and Senior
Grad do not commonly associate with other groups.

Unfortunately for the graph in Figure 4(a), an attacker with suf-
ficient background knowledge could dig out privacy information
by carefully examining the view. In Figure 4(d), we highlight two
privacy leaks. The first is that there is only one person whose [Ti-
tle] is Junior Grad and lives at the [Location] Harvard. If an at-
tacker knows this information, s/he will know this person goes to
the Friends and Gym [Hangout] places. The second leak is that if
we know that someone’s [Title] is Senior Grad and lives in MIT,
s/he goes to the Friends [Hangout].
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Figure 6(a) shows an updated visualization with these (and a
number of other) privacy issues fixed. For example, the nodes Sloan
and Junior Grad have been merged to address the first privacy issue.
Edge bundling has been applied to correct the second leak. Despite
a number of actions being applied that modify the graph’s appear-
ance and topology, the view is still able to communicate the major
information themes that are conveyed in Figure 4(a).

Figure 4(b) shows the same data as Figure 4(a) but with a differ-
ent layout of the nodes to emphasize a different pattern in the data.
For example, this alternate layout highlights that people who live in
Boston and MIT have many more social interactions than those liv-
ing in other places. Additionally, Friends is a common [Hangout]
place for people living at MIT, while Gym is popular for those who
live in Boston and Central. Because the underlying data presented
here is the same as Figure 4(a), privacy detection will reveal the
same set of privacy issues.

These leaks can be perceptually masked by adjusting the visual
layout and display appearance of the graph. In Figure 6(b), the
leaking Senior Grads node (in conjunction with the MIT node, men-
tioned above) is positioned in such a way that visual clutter makes
it difficult for a viewer to detect, though it still exists at a data-level.

In Figure 4(b), the privacy issue that exposes the hangout place
of Senior Grads who live in MIT cannot be discerned from the vi-
sualization. As a result, we choose not to address this particular
privacy issue.

6.2 School Kids Friendship Dataset
The second case study uses a dataset [11] collected from a group
of public school students (8th to 12th graders), of which we extract
an anonymous subset of the dataset (due to privacy concerns). Fig-
ure 7(a) shows a node-link diagram arranged to present ontological
semantics for the data. Here, the students that are Asian and Fe-
male tend to befriend other females rather than males, as opposed
to White Female students, who make friends equally regardless of
gender. In datasets like this, attributes such as sexual orientation
might be considered a sensitive type of information (that entities
would want kept private). By looking at the graph in Figure 7(a),
there are several privacy leaks that might expose a student’s orien-
tation. For example, there is only one Latino student who lives with
Mom Only; his sex orientation is Gay. Similarly, there is only one
Female Asian student who lives with Mom Only; her orientation is
Bisexual.

Figure 7(b) shows the visualization where these privacy leaks are
addressed. We fix the first leak by merging the Gay and Orienta-
tionOther nodes. To further improve the privacy we also bundle the
[Sex Orientation] edges that link to both Latino and Male student
nodes. Now, a person viewing the graph cannot explicitly discern
which Latino student maps to the Gay ontology node. For the sec-
ond leak, we bundle all [Sex Orientation] edges that link to Female
Asian students. Now a viewer is unable to tell which Asian student
is Bisexual. Despite modifying the graph’s topology to resolve the
leaks, the utility of the graph remains high and the overall infor-
mation presentation is nearly identical to the graph in Figure 7(a).
Though the modifications have a small visual effect on the chart,
these particular privacy leaks are now handled, ensuring these stu-
dents do not have their identities violated.

7 DISCUSSION

To further assess our prototype system and the techniques discussed
in this paper, we conducted a series of interviews with sociology
researchers. We also consider areas that require further discussion
and can potentially be avenues for future research.

7.1 Feedback from the Sociology Community
Here we summarize feedback and quotations from interviews with
four sociologists– two professors, one research fellow, and one

(a) (i) Merging Junior Grad and Sloan solves a k-anonymity leak (k=2). (ii) Edge
bundling the Friends and Cafe nodes solves two l-diversity leaks (where l=2).

(b) In some instances, a single action can solve multiple types of leaks. Merging Inman
Square and Porter solves both a k-anonymity leak (k=2) and an l-diversity leak (l=2).

Figure 6: MIT dataset graphs, with privacy operations applied (pre-
privacy action graphs are shown in Figure 4(a)-(b)).

postdoctoral researcher. Each has at least seven years experience
in conducting research and works with ontological social networks
with sizes of less than 50 to over 500,000 persons (normal ranges
usually scale to within hundreds of persons). Overall feedback was
positive; we believe that privacy detection algorithms and privacy
preserving actions like the ones used in our system can augment
current domain efforts, especially in certain data contexts.

In the sociology research community, “privacy protection is
hugely important... the problem of deductive disclosure is one most
people are aware of.” There are several strategies used to ensure
privacy of individuals; however each has its own concerns and lim-
itations. Hairballing, a naive form of the perceptual masking from
Section 4.3, has long been used: “historically, the solution to pri-
vacy in networks is the hairball problem. [The assumption is] it’d
be pretty difficult for someone to identify a person in the graph.”
Hiding the origin location of a dataset is also very common (“our
current fortress”), though this carries the risk of the data later be-
ing inadvertently exposed: “with secondary data though, you might
have someone just give away the name.”

For visualization-specific solutions, one technique is visualizing

18



(a) (i) The only Asian Female who lives with Mom Only has her sex orientation (Bi-
sexual) exposed (an l-diversity leak where l=2). (ii) Similarly, the only Latino Male
who lives with Mom Only also has his sex orientation (Gay) exposed (a k-anonymity
leak where k=2).

(b) (i) Bundling all sexual orientation edges going to Asian Females fixes the first leak.
(ii) Node merging the Gay and orientationOther nodes fixes the latter.

Figure 7: Friendship dataset graphs, (a) with leaks exposed and (b)
then fixed.

only attributes that are deemed insensitive, though this limits what
can actually be shown to viewers. Randomness in the form of node
(or edge) insertion, deletion, or modification is also used. Uncer-
tainty preserves the privacy, but it introduces error into the visual-
ization and is particularly unfeasible for smaller networks that con-
tain edge cases and outliers. One researcher noted instances where
her datasets heavily skewed male: “adding a single node, especially
if it’s a woman, can throw off the weight of the network. Introduc-
ing too much noise can take away the validity of our results.” This
forces the raw data to be kept unpublished and only statistical and
aggregate metrics can be presented. This also precludes visualiza-
tion of the raw data itself.

In giving feedback, all researchers were surprised by the amount
of privacy issues that could actually be detected by our system.
Though they knew privacy issues were present in the data, but they
did not know how they were revealed at an algorithmic level, nor
how to deal with individual cases of privacy leakage, and liked that
our system gave both explanations and solutions for issues. One
noted, “the system really helps me examine the potential privacy is-

sues in a dataset. It can save me a lot of effort.” Three researchers
noted targeted privacy preservation actions could be leveraged in
the context of the absence of IRBs, which are often used to allow
for deductive disclosure of individuals. “You can not always get the
consent of incidentals [especially in egocentric networks],” so pri-
vacy leaks regarding these individuals can be identified and fixed.
Another suggested use case was when the location of a dataset can-
not be hidden (organizations like workplaces and corporate environ-
ments were suggested) or “jiggered” by introducing dummy data,
“I like the elegance of the solution. There’s no loss of accuracy.”
It was in situations like these especially that our interviewees felt
these techniques could be leveraged.

7.2 Future Considerations for Privacy Preservation in
Ontological Graph Visualization

As Section 4.1 notes, there is no standard way to define what con-
stitutes a privacy leak. We leverage privacy definitions used in re-
lational data models, but other graph properties can be used to de-
tect leaks (even for non-ontological datasets): node degree [35,36],
edge weight [18], whether a node has a link to dummy nodes in-
tentionally created for the graph in advance by an attacker [2], and
embedded attribute information of a node [30] are all examples.

That said, once detection of privacy leaks in a graph is for-
mally defined, preservation can be accomplished using the methods
presented in this paper. Moreover, interactive graph building sys-
tems (such as our prototype) can provide the benefit of an iterative,
mixed-initiative layout. This allows users to focus on the overall
readability of the visualization as leaks are fixed.

Unfortunately, the major downside of modifying a graph for pri-
vacy preservation is loss of utility. Most data-centric approaches
measure utility by examining how well the topological properties of
a graph are maintained after anonymization [29,37]. Common met-
rics for this include shortest path, node degree distribution, span-
ning tree topology, and centrality. Integrating these into privacy
preservation models is not explored in this paper, though they do
pose interesting questions for future work. For example, you can
rank anonymization actions for a given graph by how much change
they introduce to those graph properties.

As a last note, in this paper we consider the purpose of created
graph and adjacency matrix visualizations to be for communication
and presentation of dataset results. In many cases, only the created
graphic is shared with others, not the raw dataset values. How-
ever, at other times it may be desirable or necessary to share the
underlying dataset. Since privacy preservation actions such as node
merging or edge bundling have an effect on the topology of both
graphs and adjacency matrices, an exported raw dataset can reflect
these actions.

The term for this type of action is generalization, or alterna-
tively, suppression [12]. For example, node merging is generalized
by using a single row/column to represent the merged node. Edge
bundling can be generalized by manipulating edge weight values or
annotating additional labels to denote terminal uncertainty for a set
of edges. Perceptual masking cannot be suppressed in raw data, so
care must be taken in this instance.

8 CONCLUSION

In this paper, we discuss visualization and privacy preservation of
ontological social network data using node-link diagrams and adja-
cency matrices. We leverage relational data anonymization models
to identify potential data-level privacy leaks that can be exposed
through visualization. Once identified, leaks can be dealt with
through chart modification operations or by adjusting the layout and
display, which cognitively influences the way a leak is perceived
and can effectively mask the leak from viewer perception.

To transform a privacy leaking chart into one that preserves the
security of individuals while still being useful for presentation, we

19



define an iterative workflow that allows a graph builder to (1) find
and examine privacy issues, (2) obfuscate leaks as desired, and
(3) refine and stylize the look of the visualization. Using a pro-
totype system, we demonstrate with case studies that show how our
approach can create presentable, sharable, and customized visual-
izations to maintain a tradeoff between privacy considerations and
overall chart utility.
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