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Abstract

Agent-based models (ABM) are used to simulate the spread
of infectious disease through a population. Detailed human
movement, demography, realistic business location networks,
and in-host disease progression are available in existing
ABMs, such as the Epidemic Simulation System (EpiSimS).
These capabilities make possible the exploration of pharma-
ceutical and non-pharmaceutical mitigation strategies used to
inform the public health community. There is a similar need
for the spread of mosquito borne pathogens due to the re-
emergence of diseases such as chikungunya and dengue fever.
A network-patch model for mosquito dynamics has been cou-
pled with EpiSimS. Mosquitoes are represented as a “patch”
or “cloud” associated with a location. Each patch has an or-
dinary differential equation (ODE) mosquito dynamics model
and mosquito related parameters relevant to the location char-
acteristics. Activities at each location can have different lev-
els of potential exposure to mosquitoes based on whether they
are inside, outside, or somewhere in-between. As a proof of
concept, the hybrid network-patch model is used to simulate
the spread of chikungunya through Washington, DC. Results
are shown for a base case, followed by varying the probability
of transmission, mosquito count, and activity exposure. We
use visualization to understand the pattern of disease spread.

1. INTRODUCTION

Mosquito-borne pathogens pose a significant threat to hu-
man health around the world due to globalization, which
can increase the chances of introduction of mosquito-borne
pathogens into naive regions. For example, West Nile virus,
previously absent from the Americas, was introduced to New
York in 1999 and subsequently spread across the contiguous
United States in less than 5 years. Dengue has caused increas-
ing concern due to re-emergence in areas where it had been
absent for years [14] and the risk may increase due to cli-
mate change [3]. Recently, chikungunya virus re-emerged in

Asia and caused outbreaks in Italy and several Indian Ocean
islands [2, 34].

The primary vectors for both chikungunya and dengue
are Aedes aegypti and Aedes albopictus mosquitoes, which
generate acute infections in humans. Local cases of dengue
have been confirmed in southern Texas and southern Florida,
increasing the concern about continued emergence in the
United States. Chikungunya has been absent from North
America, but a small outbreak is ongoing in the Caribbean,
providing fear of increased risk for introduction on the con-
tinent [18]. Since the primary vectors of chikungunya are
present in much of South, Central, and southern North Amer-
ica, risk of outbreaks if introduced, could be high.

There is a growing need to understand the critical param-
eters in the transmission and persistence of these diseases, to
quantify the risk of spread, and to develop effective strate-
gies for prevention and control. There have been several ef-
forts to model chikungunya since the recent outbreaks using
continuous non-spatial ordinary differential equation models
(e.g. [4,27]). Dumont et al. 2008 and 2010 [10, 11] mod-
eled chikungunya spread for the recent Réunion Island strain,
including control measures and increased transmission in A.
albopicus. Moulay et al. 2011 and 2012 [24,25] and Yakob &
Clements [38] modeled the first outbreak of chikungunya on
Reunion Island. These modeling efforts provided important
analysis and parameter estimates for chikungunya. However,
models that incorporate spatial and temporal heterogeneity in
mosquito ecology, as well as human behavior and movement
are needed. Human movement and spatio-temporal hetero-
geneity have been shown to play a significant role in risk and
control of mosquito-borne pathogens [1,7,29,32].

Adams and Kapan, 2009, [1] modeled spatial mosquito-
borne disease on a network where each network node corre-
sponded to exactly one patch and where the mosquito pop-
ulations did not explicitly depend on weather or landscape.
Others have used disaggregated spatial data for human and
mosquito populations to estimate risk of dengue in Oahu, pro-
viding risk of human exposure to mosquito bites at a particu-
lar time [36]. Chao et al. [6] developed a model for individual
humans and individual mosquitoes for semi-rural villages in



Thailand to explore the effects of vaccine on dengue transmis-
sion. Perkins et al. [26] explored the idea of different habitat
patches for various mosquito life cycle stages (blood seeking,
resting, oviposition) with movement of humans based on pro-
portion of time spent in each of the patches that are related to
mosquito behavior. We expand on and extend these models by
considering mosquito habitat patches within which mosquito
dynamics are aggregated where patch mosquito parameters
will be determined by landscape, land use, weather, socio-
economic factors, and current data about mosquito species
and density.

Here, we describe the process of adapting a detailed, large-
scale individual based model for human behavior and move-
ment to model mosquito-borne disease using the network-
patch method described in [19]. Rather than attempt to model
each mosquito individually as in [5, 41], we overlay a re-
gion through which humans are moving with mosquito habi-
tat patches that determine the risk of a human being bitten
while in the area. This will provide important information
about risk of outbreaks and control strategies for mosquito-
borne disease, particularly in urban environments.

2. METHODS
2.1. Agent-based Population Dynamics
EpiSimS [22, 23, 33] is an agent-based model that com-
bines three different sets of information to simulate dis-
ease spread within a geographic area: population (e.g., de-
mographics), locations (e.g., buildings, rooms, and mixing
places), and movement of individuals between locations (e.g.,
activity schedules). We simulated the spread of a chikun-
gunya outbreak in Washington, DC with a synthetic popu-
lation constructed to statistically match the 2000 population
demographics at the census tract level. The synthetic popula-
tion consists of 0.5 million individuals living in 0.25 million
households, with an additional 40 thousand locations repre-
senting actual schools, businesses, shops, or social recreation
addresses. The synthetic population of Washington, DC rep-
resents only individuals reported as household residents in the
2000 U.S. Census. The simulation ignores visiting tourists
and does not explicitly treat travelers in hotels and airports.
We use the National Household Transportation Survey
(NHTS) [35] to assign a schedule of activities to each indi-
vidual in the simulation. Each individual’s schedule specifies
a starting and ending time, type, and location of each assigned
activity. Information about the time, duration, and location of
activities is obtained from the NHTS. The five types of ac-
tivities are: home, work, shopping, social recreation, school,
and other. The time, duration, and location of activities deter-
mines which individuals are together at the same location at
the same time. This is relevant in the spread of infectious dis-
ease between humans and similarly for vector borne disease
between humans and mosquitoes.

Each location is geographically-located using the Dun &
Bradstreet commercial database and is subdivided into build-
ings based on the activities available at that location. Each
building is further subdivided into rooms or mixing places.
Examples include a classroom in a school, an office or meet-
ing room at work, a shop in a shopping mall, and a soccer
field for social recreation. Typical room sizes can be speci-
fied. The mean workgroup size varies by standard industry
classification (SIC) code. We estimated the mean workgroup
size by SIC from two data sources: a study on employment
density [39] and a study on commercial building usage from
the Department of Energy [21]. The mean workgroup size
ranges from 3.1 people for transportation workers to 25.4 for
health service workers. The average over all SIC’s for work is
15.3 workers per workgroup. For the analyses presented here,
the average mixing group sizes are: 8.5 people at a school,
4.4 at a shop, and 3.5 at a social recreation venue. While
mixing group size is the elemental unit in human-to-human
transmission of disease, transmission between humans and
mosquitoes is handled at the location level with variations of
exposure level by activity.

2.2. Mosquito Borne Disease Progression

Chikungunya is an arbovirus first identified in 1953 [30].
As with dengue, chikungunya has a relatively low death rate,
but often causes disease with symptoms similar to dengue
fever accented by severe arthritis-type pain [30]. Once in-
fected, immunity is thought to last for life and there is thought
to be cross-immunity between strains. Mitigation strategies
for chikungunya are similar to those used for dengue, namely
mosquito control.

Diseases such as influenza are passed from human-to-
human during close proximity through contact, sneezing,
coughing, or via fomites. In contrast, mosquito borne dis-
eases are transmitted from human-to-mosquito and mosquito-
to-human.

When a non-infected, or susceptible (S,), female mosquito
bites a human infected with chikungunya, the mosquito
has a positive probability of acquiring the pathogen. If
the mosquito is infected, the virus must reproduce in the
mosquito and make its way to the mosquito’s salivary glands.
The time that this process takes is called the extrinsic incu-
bation period and is often on the same order as a mosquito’s
average lifespan. Mosquitoes in this stage are denoted by E,
in the model. Once the virus reaches the salivary glands of
a female mosquito, the infectious mosquito (/) can transmit
the virus to a susceptible human, thus completing the cycle.
We assume that mosquitoes never recover from the pathogen
but die infectious. Note that male mosquitoes do not require
blood meals, so we only consider female mosquitoes in the
model. Once a human is infected, the virus replicates in the
human during an incubation period, after which the human



is infectious to mosquitoes (and likely symptomatic). We as-
sume that once a human recovers from the virus, he/she is
immune for life.

Symptomatic 70% Recovered
85% (5-9 days) (immune)
Exposed 30%
(2-4 days)
159% Asymptomatic Chronic
(4-7 days) (immune, 4-12
weeks)

Figure 1: Disease progression states of chikungunya in hu-
mans. The arrows represent movement of individuals from
one stage to the next.

In EpiSimS, in-host (human) disease progression of chick-
ungunya is modeled as a markov chain consisting of five
main epidemiological stages: exposed (not infectious), symp-
tomatic (infectious), asymptomatic (infectious), chronic, and
recovered (see Figure 1). Once exposed, a person incubates
for 2 to 4 days, before transitioning to the symptomatic or
asymptomatic stages, where 86% become symptomatic. A
person is infectious to mosquitoes for 5-9 days when symp-
tomatic and 4-7 days when asymptomatic. 70% transition
to the recovered stage, while 30% become chronic for 4-12
weeks before recovering. All age groups progress similarly.

2.3. Ordinary Differential
Patches of Mosquitoes

Each mosquito patch is characterized by the scalar param-
eters specific to that patch. Patches are chosen so that the
mosquitoes can be well approximated by a mean-field, ho-
mogeneous mixing model using differential or discrete equa-
tions. There is a rich history of modeling mosquito popu-
lations in the context of mosquito-borne diseases such as
dengue and chikungunya using simple ordinary differential
equations [4,10, 11, 13,24,27,37,38]. Our mosquito dynam-
ics model for a patch (see Figure 2) is described as a system
of ODEs as follows:

ds,
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The total number of adult female mosquitoes, N, = S, + E, +
I,, includes all susceptible, exposed incubating, and infec-
tious mosquitoes in the patch. The average force of infection
to mosquitoes, A, (¢) (rate of infection for each mosquito at
time ¢), in the patch is defined as the product of the average
number of bites per mosquito (determined by 65, and G,), the

probability that a bite is on an infectious human (I, (z) /N, (t)),
and the probability of transmission per bite (3,;). This rate
varies with time as the proportion of infectious humans oc-
cupying the patch varies and is updated at each time step by
coupling with the human movement model. A full description
of the mosquito model comes from [8,20] and can be found
in [19].

Mosquitoes

Figure 2: Susceptible (S,), exposed incubating (E,), and in-
fectious (/) mosquito ODE model.

The adult female mosquito per-capita emergence function,

hy(Ny,t), is hy(Ny, 1) = <\va — r}g") N, where v, is the natu-
ral per-capita emergence rate of female mosquitoes in the ab-
sence of density dependence, y, is the natural mosquito death
rate, and r, = ,, — 1, is the mosquito population growth rate.

The total mosquito population in each patch is modeled by:

dN, N,
=nl|l——]|N,. 4
dr T ( Kv> v 4

This model can incorporate vector control measures explic-
itly to the different life stages of the mosquito. Some of the
more important time dependent parameter variations are sea-
sonal mosquito recruitment rate, seasonal biting rate, seasonal
mortality rate, and a temperature-dependent seasonal extrin-
sic incubation period. This mosquito ODE model produces a
risk of transmission for humans who are bitten.

2.4. Network Patch Model

Extending the EpiSimS framework, we have added the
patch concept and disease transmission between humans and
mosquitos. A patch is associated with each location. A patch
represents a “patch” or “cloud” of mosquitoes, not individ-
ual mosquitoes. Each patch has an associated mosquito ODE
model. Patch parameters can vary between patches and con-
sist of those required for the ODE model (see Table 1), such
as number of mosquitoes, probability of transmission from
human to mosquito and from mosquito to human. Addition-
ally, each activity at a location has an associated activity ex-
posure dependent on being indoors, outdoors, or somewhere
in-between, ranging from 0.0, for no exposure, to 1.0, for full
exposure.

The population moves through their scheduled activities
between locations. Disease transmission between humans and
mosquitoes for our Washington, DC example is checked on



Table 1: Mosquito dynamics parameters for patch ODE
model (first 8 parameters) and those used when coupling the
human model with the mosquito patch model (last 4 parame-
ters).

Name | Description

vy Per capita birth rate of female mosquitoes

Oy Max number of successful mosquito bites per day

Bvh Prob. of transmission from human to mosquito

Vy Per capita rate of progression of mosquitoes from
exposed/incubating to infectious

Uy Per capita death rate of adult female mosquitoes

ry Per capita intrinsic rate of growth for mosquitoes

K, Number of mosquitoes in patch

Ch Max number of bites received by humans per day

M Total number of humans available for biting

I Total number of infectious humans available for
biting

Bhy Prob. of transmission from mosquito to human

o Time step converted to fraction of day

an hourly basis. Total number of people and total infected (in-
fectious) are collected within a patch as a weighted sum based
on the activity exposure. These values and the time step serve
as input to the mosquito ODE model. A susceptible patch can
become infected if infectious people are present. A biting risk
is returned from the ODE model and is used along with the
activity exposure to randomly decide if a susceptible person
becomes exposed.

A fourth order Runge Kutta method [28] is used to ap-
proximate the ODE system. The number of susceptible
mosquitoes, exposed/incubating mosquitoes, and infectious
mosquitoes are updated every time the disease transmission
is run.

The biting risk is tracked per patch. Events and infection
records are recorded whenever a person or patch become in-
fected. These are later post-processed for analysis and visual-
ization.

2.5. Visualization of Disease Spread

To help analyze the spread of infection, we implement
a geospatial visualization which shows time-dependent and
time-aggregated infection data. Geospatial visual analytics
have been shown to be an effective method for understand-
ing epidemic spread, hotspotting, and diffusion [9, 17,40]; it
is therefore a natural approach for analyzing the spatiotempo-
ral spread of chikungunya. The view system is implemented
using the D3 javascript library [12] and Leaflet mapping li-
brary [16], and overlays two selectable layers of infection
data on a 2-D map of Washington, DC. The initial layer is a
set of points showing infection events. An infection event oc-

curs when chikungunya is transmitted between a person and
mosquito.

The second data layer is a kernel density estimation (KDE)
of infected patches or infected people for a given day. KDE
is a non-parametric way to take a set of sample points con-
taining some feature and estimating the statistical density of
that feature in a spatial neighborhood, based on a chosen ker-
nel function [31]. In calculating a day’s infected population
density, for each infected person we aggregate all the loca-
tions they visit with the fraction of that day’s time that per-
son spends at each location. The set of times and locations is
summed together over the day’s 24 hour period. If infected
patches are selected to be shown instead of people, a chosen
patch feature from Table 1 such as B, or K, is the feature
that the KDE calculation is performed on. For our analysis,
we found the number of mosquitos in a patch (K,) the most
helpful indicator of patch influence.
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Figure 3: Plots showing percent of population infectious over
time for A) varying the probability of transmission (0.20,
0.26, 0.28), B) varying the mosquito count (low, mixed, high),
and C) varying the indoor/outdoor activity exposure (0.35,
0.50, 1.00).

3. RESULTS

Using simulation we varied the important mosquito ODE
model parameters to understand their effect on the spread of
disease. We used the Washington, DC area and synthetic pop-
ulation due to its small size and as a proof of concept. This is
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Figure 4: Snapshots of the base case at three days representing the early, middle, and incidence peak of the epidemic. The top
row shows the densities of infected people, while the bottom row shows the densities of infected patches.

not a city that is typically associated with major outbreaks of
mosquito borne disease, though it is representative of many
urban communities across the globe in its lack of mosquito
control programs [15]. Our experiments are all based on hy-
pothetical scenarios.

The Washington, DC population consists of 0.5 M people,
0.25 M homes, and 40 K business locations. All experiments
started with 21 random index cases as infected humans. These
people go on to infect mosquito patches, which in turn infect
more people, etc. The parameters that we explored in these
experiments are relevant to tuning a base case scenario and to
understand how they affect outcomes.

We considered the probability of transmission from hu-
mans to mosquitoes and from mosquitoes to humans (Bp,
and PByy), mosquito count (Ky), and activity exposure. These
parameters can be set on a per patch basis. In our experi-
ments the probability of transmission between humans and
mosquitoes (Bhy and Pyy) is the same across all patches (and
locations) representing one type of mosquito and a common
human response. The value is the same for both and can be
0.20-0.33. The mosquito count (Ky) is allowed to vary across
patches. It is assumed to be 20,000 around a swamp, less in
other places. However, note that one needs information about
land use to predict this accurately. Activity exposure repre-
sents the level of potential exposure whether inside (0.0), out-
side (1.0), or somewhere in-between (0.6). This parameter

takes on values 0.0-1.0. One value for each activity (ex. home,
work, shopping, social recreation, school, and other) taking
place in a patch (based on location). Closed work buildings
with air conditioning will be set to 0.0, while homes with torn
screens and open porches may be set to 0.6.

In all cases one parameter is varied, while the others are
held constant. We performed 3 sets of experiments as fol-
lows. The first varied the probability of transmission as 0.20,
0.26, and 0.28. The mosquito count was 5,000 and the ac-
tivity exposure was 1.0 for all patches. The second varied
the mosquito count with a fixed probability of transmission
of 0.26 and activity exposure of 1.0 for all patches. Differ-
ent numbers of mosquitoes were randomly assigned to each
patch. Scenarios included low counts (0, 100, 500, 1,000),
high counts (2,000, 3,000, 4,000, 5,000), and mixed (0, 100,
500, 1,000, 2,000, 3,000, 4,000, 5,000). The third experiment
varied activity exposure with probability of transmission 0.26
and mosquito count 5,000 for all patches. Activity exposure
scenarios included very low (0.1), low (0.25), medium (0.5),
and high (1.0). The activity exposure was the same for all ac-
tivities in a patch.

3.1. Human-Mosquito Probability of Trans-
mission

Our goal was to tune the probability of transmission be-
tween humans and mosquitoes (Byy and Byy) such that preva-



(a) Low mosquito counts only.

(b) High mosquito counts only.

(c) Both high and low patch counts.

Figure 5: Showing all infection points over mosquito density at day 100 when varying the mosquito counts in patches. (a) Low
mosquito counts hinder the growth rate, although it still spreads out geospatially. (b) More mosquitos equate to higher and faster
transmission rates, and thus a more quickly diffusing disease spread. (c) Varying the amount of mosquitos in patches shows a

growth and distribution rate between the two extremes.

lence or infectious humans peaked around day 140-150 at
10-12% of the population spread between day 100 and 200.
This is similar to the experiment results shown in Figure 3
of Manore et al. [19] where humans have high movement.
As seen in Figure 3A, a lower value of 0.20 produces slow
moving transmission, with a large spread, and a low peak. A
higher value, such as 0.26 or 0.28, results in faster transmis-
sion, a higher peak, and a narrower spread. The value of 0.26
produced a prevalence curve most similar to our criteria and
becomes our base case.

When analyzing the base case in more detail we also con-
sider the incidence or new infections per day. We plot the den-
sities of infected people and infected patches to show how the
epidemic diffuses over time. Starting with a small seed of in-
fected people who travel around the area, patches become in-
fected, and in turn infect more people. Infected people travel
around infecting patches and then recover, but patches stay
infected, leading to a saturated spatial dispersion of infected
patches. We plot three timesteps of the base case: an early
stage, middle stage, and peak incidence of the epidemic, for
days 30, 65, and 115, as shown in Figure 4.

At day 30, we see a sparse distribution of both currently in-
fected people and infected patches. By day 65, the number of
currently infected people are forming density clusters in the
Washington, DC metro area. Hotspots of infected patches also
appear here, although the diffusion of patches is more evenly
spread around the central city and sparsely spread around the
map’s edges. By day 115, the city has a heavy density of both
infected people and patches, though patches are still more
evenly spread over the entire map. The pattern of infection
spread we observe is thus: the infection jumps around patches
in its spread, but only heavily visited locales such as down-
town Washington, DC grow in infection density over time.
Less populated areas see only sporadic infection.

3.2. Mosquito Count in Patch-Locations

Starting with the base case, we vary the mosquito count
per patch (K,) as low counts (0-1,000), high counts (2,000-
5,000), and mixed (0-5,000). Mosquito counts are assigned
randomly to patches. Figure 3B shows that lower counts slow
transmission and reduce the peak, while higher counts in-
crease the transmission rate and peak. The high counts are
similar to the base case.

To show how varying the counts of mosquitos in patches
affects transmission and diffusion, we plot the infection rate
of people over time when mosquito counts in patches are low,
high, and mixed (Figure 5) for the first 100 days of the epi-
demic. High counts of mosquitos lead to the fastest transmis-
sion and highest peaks, while low counts give the opposite
effect. Mixed mosquito counts run a middle ground between
transmission rate and infection peak. To visualize the rate of
spread and infection, we map the three different mosquito
counts at day 100. For each location where an infection oc-
curred, we mark a point, colored darker according to how
long in the past the initial infection at that location happened.
Underneath this point layer, we apply a patch density layer,
based on the mosquito count value (K, ). This layering shows
the distribution of infectious mosquitos and how it correlates
to infecting humans over the course of each simulation’s first
100 days.

Figure 5a only contains low mosquito counts in patches,
and has relatively few infection points and patches. There
is hotspotting in the middle of the map, but patches are
sparsely distributed around this clustering. Figure 5b has high
mosquito counts in all its patches, and shows a large infec-
tion area in the central part of the map. The surrounding area
has an even distribution of infected patches, but the Washing-
ton, DC metro area is still where most infections occur. The
last figure, Sc, has varying counts of mosquitos in its patches.
It shows hotspotting in the central part of the map, with a



ring of less dense infected patches around that, and sparser
infected patches around the edges of the map. For all three
maps, most humans become infected only in highly dense ar-
eas of infectious mosquitos, corresponding to central Wash-
ington DC. However, the total number of infected people and
patches varies greatly depending on the counts of mosquitos
in the patches themselves.

3.3. Activity Exposure

Starting with the base case, we vary the activity exposure.
Activity exposure is the same value for all activities at all lo-
cations. A very low activity exposure of 0.1 results in little
transmission and is not shown. In Figure 3C low exposure
(0.25) shows less than 1% prevalence over time. Medium ex-
posure (0.50) produces slowed transmission and a reduced
peak, compared to the high exposure (1.0) in the base case.

4. DISCUSSION

We have a working hybrid network-patch EpiSimS ABM
coupled with mosquito ODE dynamics. Proof of concept ex-
periments demonstrated the effect of varying ODE parame-
ters, such as the probability of transmission, mosquito count,
and activity exposure. High values for the probability of trans-
mission can speed transmission, producing a higher preva-
lence peak and narrower spread. Lower mosquito counts per
patch slow transmission and activity exposure can dramati-
cally reduce exposure even at a medium (0.5) level.

There is much heterogeneity over any geographical area.
Mosquito counts per patch (or location) and activity expo-
sure can be estimated based on knowledge about the area. The
probability of transmission can then be tuned for a faster or
slower rate of transmission to match prevalence for a known
outbreak.

Through visualization we were able to capture the pattern
of disease spread. In our example, infection sites begin ran-
domly based on frequently visited locations, large mosquito
counts, and increased activity exposure. These are seen to
grow into larger density areas over time.

Future plans include validation using historical outbreak
data and the addition of relevant interventions and behaviors,
such as use of pesticides and biological methods, use of repel-
lants, wearing protective clothing, and reduction of mosquito
breeding sites.
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