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Temporal Summary Images: An Approach to Narrative
Visualization via Interactive Annotation Generation and Placement

Chris Bryan, Student Member, IEEE, Kwan-Liu Ma, Fellow, IEEE, and Jonathan Woodring

Abstract— Visualization is a powerful technique for analysis and communication of complex, multidimensional, and time-varying data.
However, it can be difficult to manually synthesize a coherent narrative in a chart or graph due to the quantity of visualized attributes,
a variety of salient features, and the awareness required to interpret points of interest (POIs). We present Temporal Summary
Images (TSIs) as an approach for both exploring this data and creating stories from it. As a visualization, a TSI is composed of
three common components: (1) a temporal layout, (2) comic strip-style data snapshots, and (3) textual annotations. To augment user
analysis and exploration, we have developed a number of interactive techniques that recommend relevant data features and design
choices, including an automatic annotations workflow. As the analysis and visual design processes converge, the resultant image
becomes appropriate for data storytelling. For validation, we use a prototype implementation for TSIs to conduct two case studies
with large-scale, scientific simulation datasets.

Index Terms—Narrative visualization, storytelling, annotations, comic strip visualization, time-varying data

1 INTRODUCTION

Visualization may be used as both an exploratory and explanatory tool
for those who routinely need to analyze and extract essential informa-
tion from their datasets and then communicate findings with others.
While many visual analysis methods have been developed, there is
less support for creating narrative visualizations. In particular, as data
becomes large, complex, multidimensional, and sometimes heteroge-
neous, manually sifting through, identifying, and highlighting the es-
sential aspects of a chart or graph becomes a laborious task. It would
be desirable if, over the process of exploration and analysis, the vi-
sualization system suggests important areas and features to select and
label, for the purpose of deriving a data story to use in subsequent tasks
or presentations.

To help address this problem, we present Temporal Summary Im-
ages (TSIs), a framework to create narrative visualizations of multi-
variate, time-varying datasets. Visually, a TSI is composed of three
common components: (1) a temporal layout view such as a line chart
or storyline, (2) data snapshots appended at relevant timesteps, and
(3) anchored textual annotations. Figure 1 shows an example TSI. It
succinctly tells a story about immigration in the United States using a
stacked graph for its temporal layout, five cartographic maps as the set
of data snapshots, and six descriptive annotations.

The focus of this paper is not solely the finalized, “presentation-
style” images that a TSI designer can produce. Rather, we emphasize
the convergence of the analysis and design processes. To augment
exploration, we contribute a number of interactive “under the hood”
techniques. These assist data interaction and visualization creation
by performing two tasks: (1) selection of relevant timesteps for data
snapshots and (2) providing a user-in-the-loop, automatic annotations
workflow to recommend data points of interest (POIs) on the display.
A large portion of this paper focuses on this novel annotation support,
which automatically creates, scores, ranks, and appends data-driven
annotations onto the display. During analysis, these alert the user both
to salient visual regions and to significant data features. If desired, rec-
ommended annotations can be saved and subsequently used to convey

• Chris Bryan and Kwan-Liu Ma are with the University of California,
Davis. E-mail: {cjbryan, klma}@ucdavis.edu.

• Jonathan Woodring is with Los Alamos National Laboratory. Email:
woodring@lanl.gov.

key data observations about the data when the TSI is presented to a
general audience.

Furthermore, as the overall exploration and building process hap-
pens, a designer searches, filters, and edits the data to display while
tweaking its overall visual appearance. As these two tasks synthesize
together, a unified, summary data story effectively emerges that em-
phasizes the important aspects and trends of the underlying dataset.
Further stylizing the components results in an image appropriate for
presentation or public display according to the author’s purpose.

We have created a prototype TSI application based on the frame-
work and techniques we describe in this paper. For validation, we con-
duct two case studies using large-scale, scientific simulation datasets
(a disease and cosmological model, respectively). Based on domain
participant feedback, our approach is effective for both analyzing and
summarizing datasets.

2 BACKGROUND AND RELATED WORK

Related prior work falls into two main categories: (1) narrative vi-
sualization and storytelling as methods for communicating data, and
(2) the three specific visual components of a TSI: time-varying tech-
niques, small multiples (also called comic strips), and annotations.

2.1 Narrative Visualization and Storytelling
Segel and Heer categorize and review narrative visualization in [35].
They describe seven specific genres for this, including annotated
graphs/charts and comic strip visualizations. A narrative visualization
can be framed to tell a data story by prioritizing a specific interpreta-
tion or perception of the data [19].

The concept of data storytelling itself has been highlighted in the In-
foVis, SciVis, and business communities [15, 23, 25, 28]. Here, the fo-
cus is on how film, literary, and theatrical narrative conventions can be
used to adapt visualizations for communication to broad demographic
audiences. In [26], Lee et al. argue for explicitly defining the scope of
what should be called a data story, and propose a three-step process for
visual storytelling based on the following tasks: (1) find insights, (2)
create a story, and (3) tell the story. We focus the TSI process on the
first two points: exploring the data and creating a presentation-quality
visualization.

In the broader context of visualization design for communication,
Moere and Leuven argue in [32] that aesthetics make up an important
third constraint for visualization (in addition to soundness and utility).
Recent papers have focused on the workflow aspects of creating info-
graphic or presentation-style visualizations [7,34,39,46], though most
require fully manual design with no consideration for analytic tasks.
While some tools combine both goals [16, 36], their design is for a
different set of tasks that what the TSI framework addresses.
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Fig. 1: A built TSI using a stacked graph to show immigration to the United States, 1830-2010. Each layer represents the total percent of
immigrants based on country (or region) of origin. Data snapshots show how the distribution of immigrants has changed over time. Annotations
juxtapose how Ireland was once a significant portion of total immigration but now is only a fraction, while for Mexico the opposite has happened.

2.2 Displaying Time-Oriented Data

The largest visual component in a TSI is its temporal layout for dis-
playing time-varying data. The chosen layout depends on the author’s
discretion; the four options we discuss in the current framework are
line charts and streamgraphs [10] for purely numeric data, and story-
lines [40] and alluvial diagrams [33] for flow-based, categorical data.
While these are widely-known, conventional techniques (we choose
them for this reason), there are many more potential ways to show
time varying data [5] that have been designed with specific datasets or
aesthetics in mind.

In addition to straightforward visual plotting, a multi-component
system can augment a temporal view via linked displays or appended
visual components, usually to enable data analytics. For example, the
STAC [42] and PieceStack [43] systems focus on analysis of stacked
graphs. ChronoLenses [44] are a lens-based, data-transformation
pipeline for line charts. The SemanticTimeZoom system [6] supports
data analysis by combining both qualitative and quantitative visuals
in a chart. These techniques support detailed interactions and under-
standing with the underlying data, but do so at the expense of having
to focus on specific visual layouts (i.e., only streamgraphs) and do not
consider data storytelling or presentation. In contrast, TSIs can dis-
play multiple types of temporal views and use text annotations as a
way to communicate qualitative data observations without requiring a
training period for TSI authors/viewers to interpret their meanings.

2.3 Small Multiples and Comic Strips

Small multiples use a set of views (or frames) at discrete data incre-
ments to show change across one or more dimensions [41]. When this
change tends to follow a strictly linear data path (even if it involves
zooming and filtering), the technique can be defined as a comic strip-
style of narrative visualization [35].

Prior work has used comic strip visualizations as a way to summa-
rize or present data [12, 45, 46]. Conversely, the VizPattern system
uses comic strips as an interface for creating visual queries to generate
data charts [21]. A recent paper called Graph Comics [7] uses comic
strips to summarize network change over time. Frames are stylized
by appending text captions, labels, and annotations to highlight spe-
cific aspects of the temporal data evolution. However, all design and
building is manually performed by the system user.

The comic strip technique is used for the TSI data snapshots com-
ponent. To assist choosing which snapshots to show, we present three
algorithms for timestep selection, see Section 4.2. This is similar to
some prior systems (such as [45]) in that timesteps are chosen using
distance and clustering heuristics. A TSI author selects both the de-
sired timestep selection technique and the desired data attributes to
segment on, and can manually tweak results or select a different algo-
rithm until an acceptable result is found.

2.4 Annotating Visualization

Perceptual understanding of salient features is important for graph and
chart comprehension [18]. Text-based annotations help this process by
“graphically pointing” a viewer’s attention to regions of interest, and
can be used to suggest conclusions and provide data context [35].

In [20], the authors define annotations that specifically reference
visualized data as observational, while additive annotations provide
extra information not shown in the view itself. Annotations created
by sketching are defined as freeform, and are especially important in
asynchronous, collaborative settings and in journalism/infographic de-
sign [11,17]. Alternatively, data-driven annotations are generated and
placed by querying the underlying dataset and referencing the visual
layout [20, 22].

Data-driven annotations that are automatically created attempt to
identify and label a dataset/visualization’s most interesting features or
overall themes. Google Drive recently launched “verbalizations” [1]
for their spreadsheets application, which creates a chart of the data
with a descriptive caption. In [22], Kandogan introduces a system
to annotate clusters, outliers, and trends in point-based data visual-
izations. Kong and Agrawala created an observational annotation ap-
proach in [24] that labels an already-created chart’s features and di-
mensions without referencing the underlying raw data values.

A particularly relevant work to this paper is by Hullman et al. [20].
They annotate stock market timelines by matching price extremas with
temporally-relevant news stories retrieved from a database. This lets
them create context-aware, additive annotations. A similar approach is
used in [14] to annotate geographic maps. In contrast, the TSI frame-
work can create both additive and observational types of annotations,
with a focus on placement. Annotations can also be applied to differ-
ent types of time-varying visual techniques (not only line charts).

3 DESIGN REQUIREMENTS AND WORKFLOW

The motivation for TSIs came from discussion with the EpiSimS dis-
ease simulation team (see Section 6.1.1 for a case study). The mem-
bers of this group, though well-versed in epidemic research, were not
visualization experts and had limited experience in using complex vi-
sual analytic and design tools. Based on their usual analysis needs and
the steps they take to create images for review, we defined the follow-
ing specific set of tasks for the team:

T1 Results along spatiotemporal dimensions. EpiSimS simulation
output data has two main dimensional axes. (1) Disease spread
happens over a time period as the epidemic grows, peaks, and
decays. (2) This spread happens over a geographic region, usually
initially via hotspots and then to full diffusion.

T2 Data analysis by querying for features. EpiSimS scientists have
a high familiarity with their domain data and this directs their ex-
ploration. Their main focus is understanding how simulation input
parameters and mitigation strategies affect epidemic lifecycle be-
havior for specific points of interest (POIs), such as an outbreak’s
peak or its distribution throughout a population’s demographics.
This is done by querying the underlying dataset via SQL or table-
based spreadsheet functions.

T3 Presentation with conventional tools. To present results to col-
laborators or general audiences (such as at a conference or in a
paper), static plots are used (line charts, maps, etc.), created with
tools like R or Python’s matplotlib library. They are combined and
captioned using image editing software.

Though these tasks as written are specific to the EpiSimS team, they
can easily be generalized. In a broad sense, researchers and chart de-
signers may first wish to quickly review, analyze, and explore their
data for relevant features or POIs. They then summarize results with
a set of visual elements for presentation or storytelling. As opposed
to doing these tasks manually and with no guidance, the TSI frame-
work combines them into a single workflow and provides techniques
to augment the analysis and the image building processes. To formally
justify the design components and interaction techniques discussed
throughout the rest of this paper, we first define a set of guidelines
that the TSI framework should adhere to:

DG1 Temporal-plus data views. The dataset should be visualized
on (at least) two primary dimensional axes: the time-varying do-
main plus one or more “other” dimensions. In generalizing from
the EpiSimS-specific tasks, the spatial domain is abstracted; it
now only needs to be orthogonal to the temporal axis.

DG2 Highlight important elements. Important dataset features and
POIs should be highlighted to initially call attention to authors
creating a TSI and then to viewers observing a completed TSI.

DG3 Succinct view for presentation. A completed or “built” TSI
should be suitable for data presentation or storytelling as a sin-
gle, connected, static figure. During creation, this implies an
emphasis on styling and configuring the graphical components
of a TSI to the author’s preferred liking, and then exporting the
image to a format suitable for display. In the context of visual-
ization theory, this suggests that conventional or widely under-
stood visual techniques be used, since they will be more easily
understood by a general population of viewers.

Three visual components were chosen to fulfill these requirements.
For DG1, an author-selected temporal layout displays a time-varying
data view. In consideration of DG3, we use conventional time-varying
techniques. One or more comic-strip sets of data snapshots show
the “other,” orthogonal dimensions. The reasoning for using comic
strips (as opposed to animation or similar techniques) is due to the
static image aspect of DG3. To ensure that components are linked to-
gether (forming a single, connected overall image), snapshots are ap-
pended above the temporal layout along a track at their corresponding

Fig. 2: An overview of the TSI analysis and design workflow. The
automatic annotations workflow is illustrated in Figure 4.

timesteps. To help TSI authors choose the “best” snapshots to show,
we contribute a set of automatic timestep selection techniques.

To address DG2, we use textual annotations to perform graphical
pointing of important elements on the temporal layout. Data-driven
annotations are automatically created and appended to the display in a
novel workflow; they act as a form of guided exploration for a TSI de-
signer by alerting him/her to important data features or salient regions
in the view. When familiar with the data, an author can quickly inter-
act with a list of created annotations to search for relevant attributes,
extremas, and POIs, or manually query the data to create new annota-
tions. For communicating key observations to viewers in a built TSI,
selected annotations can be pinned and saved. In this way the anno-
tations workflow serves a dual purpose, by enriching analysis and ex-
ploration for authors and by communicating findings to viewers. Since
annotations are text-based, they have an advantage over more abstract
visual techniques (such as [6]) of requiring no training for interpre-
tation, since the relevant POI or feature is explicitly described by the
note’s text.

3.1 Workflow
Besides simply defining a set of visual components, the design guide-
lines imply that there must be a process for TSI exploration and image
building. We show this workflow in Figure 2, which notes the specific
steps and interactions that a TSI author performs.

The user first loads a set of files. In our implementation, besides the
raw data these can include configuration options like choice of tem-
poral layout, color palettes, and pre-saved annotations. This generates
an initial view of the TSI by creating the temporal layout, selecting a
set of data snapshots based on the default (or user-specified) timestep
selection options, and loading any saved annotations.

There are many interactions the user can now perform. Data snap-
shots can be edited by selecting a different set of timesteps (choosing
a new heuristic for timestep selection, changing the number to show,
etc.) or dragging them to different timesteps along their track. A sec-
ond set of data snapshots can additionally be loaded and appended
above the first set (see Figure 10).

Regarding annotations, the author can select the attributes and POI
types that are important to him/her and start the automatic annotations
workflow. This creates a set of data-driven annotations and tries to
place the most important ones on the display based on a relevancy
ranking. We contribute two algorithms for annotation placement. An-
notations can individually be interacted with: dragged, edited, deleted
and filtered, or the user can edit the underlying attribute/POI scores to
wholesale re-rank, filter, select, and place annotations on the display.

In addition to this, our system provides an interface for manual data
querying (via SQL) and annotation creation. We also let designers
stylize and tweak the visual components: setting colors, font styles,
editing default text and labels, adjusting component sizes, etc. When
an author is satisfied with the visual output, s/he can export or save the
finished TSI as an image file or save its current state for later reuse.
An exported TSI is meant to be a summarization of the dataset, as
it includes views along important dimensional axes (via the temporal
layout and data snapshots). The set of saved annotations acts as a way
to help narrate trends or highlights to TSI viewers.
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Fig. 1: A built TSI using a stacked graph to show immigration to the United States, 1830-2010. Each layer represents the total percent of
immigrants based on country (or region) of origin. Data snapshots show how the distribution of immigrants has changed over time. Annotations
juxtapose how Ireland was once a significant portion of total immigration but now is only a fraction, while for Mexico the opposite has happened.

2.2 Displaying Time-Oriented Data

The largest visual component in a TSI is its temporal layout for dis-
playing time-varying data. The chosen layout depends on the author’s
discretion; the four options we discuss in the current framework are
line charts and streamgraphs [10] for purely numeric data, and story-
lines [40] and alluvial diagrams [33] for flow-based, categorical data.
While these are widely-known, conventional techniques (we choose
them for this reason), there are many more potential ways to show
time varying data [5] that have been designed with specific datasets or
aesthetics in mind.

In addition to straightforward visual plotting, a multi-component
system can augment a temporal view via linked displays or appended
visual components, usually to enable data analytics. For example, the
STAC [42] and PieceStack [43] systems focus on analysis of stacked
graphs. ChronoLenses [44] are a lens-based, data-transformation
pipeline for line charts. The SemanticTimeZoom system [6] supports
data analysis by combining both qualitative and quantitative visuals
in a chart. These techniques support detailed interactions and under-
standing with the underlying data, but do so at the expense of having
to focus on specific visual layouts (i.e., only streamgraphs) and do not
consider data storytelling or presentation. In contrast, TSIs can dis-
play multiple types of temporal views and use text annotations as a
way to communicate qualitative data observations without requiring a
training period for TSI authors/viewers to interpret their meanings.

2.3 Small Multiples and Comic Strips

Small multiples use a set of views (or frames) at discrete data incre-
ments to show change across one or more dimensions [41]. When this
change tends to follow a strictly linear data path (even if it involves
zooming and filtering), the technique can be defined as a comic strip-
style of narrative visualization [35].

Prior work has used comic strip visualizations as a way to summa-
rize or present data [12, 45, 46]. Conversely, the VizPattern system
uses comic strips as an interface for creating visual queries to generate
data charts [21]. A recent paper called Graph Comics [7] uses comic
strips to summarize network change over time. Frames are stylized
by appending text captions, labels, and annotations to highlight spe-
cific aspects of the temporal data evolution. However, all design and
building is manually performed by the system user.

The comic strip technique is used for the TSI data snapshots com-
ponent. To assist choosing which snapshots to show, we present three
algorithms for timestep selection, see Section 4.2. This is similar to
some prior systems (such as [45]) in that timesteps are chosen using
distance and clustering heuristics. A TSI author selects both the de-
sired timestep selection technique and the desired data attributes to
segment on, and can manually tweak results or select a different algo-
rithm until an acceptable result is found.

2.4 Annotating Visualization

Perceptual understanding of salient features is important for graph and
chart comprehension [18]. Text-based annotations help this process by
“graphically pointing” a viewer’s attention to regions of interest, and
can be used to suggest conclusions and provide data context [35].

In [20], the authors define annotations that specifically reference
visualized data as observational, while additive annotations provide
extra information not shown in the view itself. Annotations created
by sketching are defined as freeform, and are especially important in
asynchronous, collaborative settings and in journalism/infographic de-
sign [11,17]. Alternatively, data-driven annotations are generated and
placed by querying the underlying dataset and referencing the visual
layout [20, 22].

Data-driven annotations that are automatically created attempt to
identify and label a dataset/visualization’s most interesting features or
overall themes. Google Drive recently launched “verbalizations” [1]
for their spreadsheets application, which creates a chart of the data
with a descriptive caption. In [22], Kandogan introduces a system
to annotate clusters, outliers, and trends in point-based data visual-
izations. Kong and Agrawala created an observational annotation ap-
proach in [24] that labels an already-created chart’s features and di-
mensions without referencing the underlying raw data values.

A particularly relevant work to this paper is by Hullman et al. [20].
They annotate stock market timelines by matching price extremas with
temporally-relevant news stories retrieved from a database. This lets
them create context-aware, additive annotations. A similar approach is
used in [14] to annotate geographic maps. In contrast, the TSI frame-
work can create both additive and observational types of annotations,
with a focus on placement. Annotations can also be applied to differ-
ent types of time-varying visual techniques (not only line charts).

3 DESIGN REQUIREMENTS AND WORKFLOW

The motivation for TSIs came from discussion with the EpiSimS dis-
ease simulation team (see Section 6.1.1 for a case study). The mem-
bers of this group, though well-versed in epidemic research, were not
visualization experts and had limited experience in using complex vi-
sual analytic and design tools. Based on their usual analysis needs and
the steps they take to create images for review, we defined the follow-
ing specific set of tasks for the team:

T1 Results along spatiotemporal dimensions. EpiSimS simulation
output data has two main dimensional axes. (1) Disease spread
happens over a time period as the epidemic grows, peaks, and
decays. (2) This spread happens over a geographic region, usually
initially via hotspots and then to full diffusion.

T2 Data analysis by querying for features. EpiSimS scientists have
a high familiarity with their domain data and this directs their ex-
ploration. Their main focus is understanding how simulation input
parameters and mitigation strategies affect epidemic lifecycle be-
havior for specific points of interest (POIs), such as an outbreak’s
peak or its distribution throughout a population’s demographics.
This is done by querying the underlying dataset via SQL or table-
based spreadsheet functions.

T3 Presentation with conventional tools. To present results to col-
laborators or general audiences (such as at a conference or in a
paper), static plots are used (line charts, maps, etc.), created with
tools like R or Python’s matplotlib library. They are combined and
captioned using image editing software.

Though these tasks as written are specific to the EpiSimS team, they
can easily be generalized. In a broad sense, researchers and chart de-
signers may first wish to quickly review, analyze, and explore their
data for relevant features or POIs. They then summarize results with
a set of visual elements for presentation or storytelling. As opposed
to doing these tasks manually and with no guidance, the TSI frame-
work combines them into a single workflow and provides techniques
to augment the analysis and the image building processes. To formally
justify the design components and interaction techniques discussed
throughout the rest of this paper, we first define a set of guidelines
that the TSI framework should adhere to:

DG1 Temporal-plus data views. The dataset should be visualized
on (at least) two primary dimensional axes: the time-varying do-
main plus one or more “other” dimensions. In generalizing from
the EpiSimS-specific tasks, the spatial domain is abstracted; it
now only needs to be orthogonal to the temporal axis.

DG2 Highlight important elements. Important dataset features and
POIs should be highlighted to initially call attention to authors
creating a TSI and then to viewers observing a completed TSI.

DG3 Succinct view for presentation. A completed or “built” TSI
should be suitable for data presentation or storytelling as a sin-
gle, connected, static figure. During creation, this implies an
emphasis on styling and configuring the graphical components
of a TSI to the author’s preferred liking, and then exporting the
image to a format suitable for display. In the context of visual-
ization theory, this suggests that conventional or widely under-
stood visual techniques be used, since they will be more easily
understood by a general population of viewers.

Three visual components were chosen to fulfill these requirements.
For DG1, an author-selected temporal layout displays a time-varying
data view. In consideration of DG3, we use conventional time-varying
techniques. One or more comic-strip sets of data snapshots show
the “other,” orthogonal dimensions. The reasoning for using comic
strips (as opposed to animation or similar techniques) is due to the
static image aspect of DG3. To ensure that components are linked to-
gether (forming a single, connected overall image), snapshots are ap-
pended above the temporal layout along a track at their corresponding

Fig. 2: An overview of the TSI analysis and design workflow. The
automatic annotations workflow is illustrated in Figure 4.

timesteps. To help TSI authors choose the “best” snapshots to show,
we contribute a set of automatic timestep selection techniques.

To address DG2, we use textual annotations to perform graphical
pointing of important elements on the temporal layout. Data-driven
annotations are automatically created and appended to the display in a
novel workflow; they act as a form of guided exploration for a TSI de-
signer by alerting him/her to important data features or salient regions
in the view. When familiar with the data, an author can quickly inter-
act with a list of created annotations to search for relevant attributes,
extremas, and POIs, or manually query the data to create new annota-
tions. For communicating key observations to viewers in a built TSI,
selected annotations can be pinned and saved. In this way the anno-
tations workflow serves a dual purpose, by enriching analysis and ex-
ploration for authors and by communicating findings to viewers. Since
annotations are text-based, they have an advantage over more abstract
visual techniques (such as [6]) of requiring no training for interpre-
tation, since the relevant POI or feature is explicitly described by the
note’s text.

3.1 Workflow
Besides simply defining a set of visual components, the design guide-
lines imply that there must be a process for TSI exploration and image
building. We show this workflow in Figure 2, which notes the specific
steps and interactions that a TSI author performs.

The user first loads a set of files. In our implementation, besides the
raw data these can include configuration options like choice of tem-
poral layout, color palettes, and pre-saved annotations. This generates
an initial view of the TSI by creating the temporal layout, selecting a
set of data snapshots based on the default (or user-specified) timestep
selection options, and loading any saved annotations.

There are many interactions the user can now perform. Data snap-
shots can be edited by selecting a different set of timesteps (choosing
a new heuristic for timestep selection, changing the number to show,
etc.) or dragging them to different timesteps along their track. A sec-
ond set of data snapshots can additionally be loaded and appended
above the first set (see Figure 10).

Regarding annotations, the author can select the attributes and POI
types that are important to him/her and start the automatic annotations
workflow. This creates a set of data-driven annotations and tries to
place the most important ones on the display based on a relevancy
ranking. We contribute two algorithms for annotation placement. An-
notations can individually be interacted with: dragged, edited, deleted
and filtered, or the user can edit the underlying attribute/POI scores to
wholesale re-rank, filter, select, and place annotations on the display.

In addition to this, our system provides an interface for manual data
querying (via SQL) and annotation creation. We also let designers
stylize and tweak the visual components: setting colors, font styles,
editing default text and labels, adjusting component sizes, etc. When
an author is satisfied with the visual output, s/he can export or save the
finished TSI as an image file or save its current state for later reuse.
An exported TSI is meant to be a summarization of the dataset, as
it includes views along important dimensional axes (via the temporal
layout and data snapshots). The set of saved annotations acts as a way
to help narrate trends or highlights to TSI viewers.
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3.2 Example TSI: US Immigration 1830-2010

We illustrate a built TSI through an example use case, shown in Figure
1. This TSI tells a story about immigration trends in the United States
from 1830-2010 (data from [3, 4]). The temporal layout shows the
percent of immigrants for each decade based on country (or region)
of origin. Each timestep sums to 100%, which is intuitively commu-
nicated by the use of a stacked graph. The layers for Ireland, Russia,
and Mexico have been highlighted with bright colors. Above this, data
snapshots are cartographic maps; each state is colored according to its
dominant immigrant population.

The combination of the stacked graph and map snapshots show im-
migration has dramatically evolved in two ways: the countries that
people are coming from, and the states they are moving to. To empha-
size that the trends of Ireland and Mexico have mirrored each other,
selected annotations describe these two data layers with playful text.
They direct the viewer’s attention: Irish immigrants once made up al-
most half of all immigrants to the United States but have presently
dwindled to only a small fraction. Meanwhile, Mexican immigration
has gone the opposite direction.

4 TEMPORAL LAYOUT AND DATA SNAPSHOTS

We now give a high-level overview of a TSI’s first two visual compo-
nents: the temporal layout and data snapshots.

4.1 Temporal Layout

The temporal layout shows a time-varying view of the data; it is cen-
trally placed and oriented horizontally from left-to-right. The choice
of visualization here depends on a TSI author’s discretion, and so
should be carefully considered. For independent, numeric time se-
ries (such as stock prices), a line chart is a straightforward choice. A
streamgraph can be utilized if showing the temporal data magnitudes is
an important consideration, such as in the immigration example (Fig-
ure 1). For categorical or flow data, a technique like storylines or
alluvial diagrams should be used.

Our current implementation uses these four techniques as options
for the temporal layout. As they are well-known conventional tech-
niques, they should be effective when used for presentation to a gen-
eral audience. In theory however, any time-dependent visualization
technique could be used for this component, though more complex or
abstract views introduce potential interpretation issues.

4.2 Data Snapshots

Data snapshots are a comic strip set of visual frames, showing a view
of the dataset that is orthogonal to the temporal layout. In the immi-
gration example, this is a cartographic view of the data. Snapshots
are appended to a track above the temporal layout, with placement
corresponding to their associated timesteps. They are meant to pro-
vide additional insight into the temporal evolution of the dataset and
help give a holistic summary of the data. Like the temporal layout,
the choice of visualization technique used in the frames is left to the
author. Our current TSI prototype stores data snapshots as sets of im-
age files; relevant ones are retrieved and appended to the display. In
the case studies (Section 6.1), spatial and volume renderings are used,
but more abstract or projectional mappings might be appropriate de-
pending on the context. These can include scatter plots, bar charts,
heatmaps, video stills, and other dimensionality reduction techniques.

The set of data snapshots shown is dependent on a set of chosen
timesteps. To assist a TSI author in selecting appropriate snapshots,
we provide three techniques for automatic timestep selection: mod-
ulo timestep indexing, entropy threshold selection, and hierarchical
segmentation. To use one of these, a user first selects one or more
temporal attributes in the dataset. The heuristic is applied to the set
of attributes and returns a set of timesteps. Figure 3 shows how the
techniques would select timesteps for an example attribute: a numeri-
cal data vector in a line chart. For each chosen timestep, the relevant
snapshot image is retrieved and appended to the TSI.

Fig. 3: Automatic timestep selection for a line chart based on three
techniques. Modulo timestep indexing generates a snapshot every m
steps. Entropy threshold selection generates snapshots when the data
change passes a denoted limit. Hierarchical segmentation generates a
user-defined number of segments (the alternating gray-white bars) and
picks a single step to “represent” each.

Modulo Timestep Index This is the typical timestep selection
process employed in simulations where data is saved at periodic in-
tervals; i.e., a snapshot is selected for every m number of steps. This
returns a linearly discretized selection of the data snapshots with con-
stant step size.

Entropy Threshold The entropy is calculated between each suc-
cessive timestep (or set of timesteps). When overall entropy exceeds
a defined limit, that timestep is selected. This technique emphasizes
timestep selection based on large-scale data changes, as opposed to
generally flat or stable data.

Hierarchical Segmentation The delta (change) at each timestep
is calculated. A hierarchical clustering is applied to the deltas to gen-
erate a hierarchical segmentation over all timesteps, then a cut is made
for the desired number of segments to return. A “representative”
timestep is selected for each segment based on a desired statistical
metric (such as mean delta value or standard deviation). We currently
use mean delta value to determine this.

We note here that these three techniques are based on a data ab-
straction; that is, snapshot selection is not linked to the chosen tempo-
ral layout technique or the currently displayed set of annotations. The
reasoning for this is that an author might choose snapshot timesteps
based on attributes disconnected to (independently of) these compo-
nents. The used data attributes might not be shown in the temporal
layout and are only included in the dataset specifically for snapshot
selection.

Once loaded, appended snapshots can be interactively dragged, re-
moved, or reset based on designer preferences. If a heuristic gives
insufficient results then another may be tried or timesteps may be fully
manually selected.

5 ANNOTATIONS

Annotations visually point to salient data features and/or elements.
They are the third component of a TSI, overlaid and anchored onto
the temporal layout.

A major aspect of the TSI framework is its workflow for automatic
annotation support, shown in Figure 4. This section describes this
workflow. We start by explaining what data POIs are and how they
are leveraged for annotation creation. Once created, annotations are
scored and ranked. Before display, they must be properly positioned.

Fig. 4: The workflow for automatic annotations supports creation,
placement, and interaction. Annotations are initially created from the
POIs of data attributes. Based on POI type and attribute scores, the
annotations are scored, filtered, ranked, placed, and displayed. User
interaction triggers a prior step in the process.

This entails filtering and selecting only the most highly ranked and rel-
evant annotations, for which we introduce two placement algorithms.
Interacting with the system, such as zooming, panning, deleting an un-
desired annotation, or updating an attribute’s score triggers a prior step
in the annotations workflow, forcing annotation re-ranking and poten-
tially causing new annotations to be shown and old ones removed.
This forms a user-in-the-loop cycle, where ranked annotations can be
reviewed and used to guide analysis and exploration. Desired annota-
tions can be pinned to the display, to explain relevant results or high-
light aspects of the data.

5.1 Data Points of Interest (POIs)
An annotation describes a single aspect of the underlying dataset,
which we refer to as a point of interest (POI). Conversely stated, a
POI can be described using a single annotation. POIs are properties
of data attributes like value extremas or changes, starts and stops, cat-
egorical, state, or flow changes, stable regions, and more. Though a
single POI can apply to multiple elements of a data attribute (a flat
region may span multiple timesteps, for example), it still refers to a
single feature of the data. Hence, we use the term POI only and not
ROI (region of interest) for description.

As noted in Section 2.4, annotations are either additive or observa-
tional depending on whether they reference visualized data or add ad-
ditional information to the view. Our system allows for additive anno-
tations to be manually created or queried for against background data
attributes not shown in the temporal layout; they can also be loaded in
the initial set of data used to build the TSI.

5.1.1 Types of POIs
Figure 5 displays examples of observational POIs that can be extracted
from three types of data attributes: numerical vectors, storylines, and
alluvial diagrams. Each shown POI corresponds to a single annotation.

Numerical Vector POIs A time series can be shown using a line
chart (as in Figure 5a) or a stacked graph. The data used to show
each line (or stacked graph layer) in the chart is an independent array
of numbers (also called a numerical vector). By examining the vec-
tor’s value features, numerical POIs can be extracted: the first and last
instances of numbers, minimas and maximas, flat regions, and slope
changes (increases and decreases over a set of timesteps).

Storyline POIs Figure 5b shows examples of POIs in storylines.
Line-specific POIs are categorical, in that they describe the current
state of a line (or set of lines). For example, line L1 starts at step 1 in
group A, changes to group B at step 5, and ends at step 6. Alterna-
tively, numerical POIs describe the groups that lines enter and leave.
Group A starts at step 1 with a size of 2 (it contains two lines), has a
maximum of 3 at steps 2 and 3, and so forth. Group A’s numeric size
vector would thus be [2, 3, 3, 1, null, null].

Alluvial Diagram POIs Figure 5c notes examples POIs in allu-
vial diagrams, which show data flow between groups over time. Flow
size can change by having a part of a stream split off and go to an-
other group, or by having flow from another group merge into the cur-
rent stream. These POIs indicate the group’s size has changed. They

(a) Time Series POIs (b) Storyline POIs.

(c) Alluvial Diagram POIs.

Fig. 5: Data aspects (termed POIs, or points of interest) that can be
extracted from three types of time-dependent visualizations.

are both numeric and categorical because the flow changes a numeric
amount and the groups that the flow goes between are qualitatively
distinct. When flow is constant between steps, it is either in a stable
region (i.e., no splitting or merging to other groups) or because the en-
tire flow changes groups together. Numeric POIs based on group size
can also be extracted, as is done for storyline groups.

POIs from Combined Attributes For each of the example visu-
alizations, we note there are POIs that can be extracted from “combo
attributes.” A combo attribute is when two or more data attributes are
combined via logical operators. In the storyline example, the maxi-
mum size of group [B AND C] is 3 at step 5. Line [L1 AND L3] first
enters group B at step 5; line [L1 OR L3] does so at step 4. Lines can
also be combined with groups to form combo attributes, for example,
Line [L1 AND A] is the subset of line L1 when it is part of group A.

5.1.2 Manually Queried and Additive POIs
Since data attributes are either numeric or categorical vectors, they can
be stored in a manner that permits SQL querying. Our TSI implemen-
tation stores data attributes using an HSQLDB cache [2] and includes
a query interface. This allows for searching of more complex POIs
that are not automatically extracted, as well as access to background
data attributes not shown in the temporal display. In the cosmology
case study (Section 6.1.2), one participant noted for his datasets he
would use this feature to identify timesteps where data attributes are
50% of their maximum value. When a query is run, it creates a single
annotation based on the timesteps(s) and attribute(s) it applies to.

If a manual query references only background data, then an addi-
tive annotation is created. This type of annotation is anchored to the
timestep(s) to which it refers. Additive annotation can also be loaded
at TSI initialization time, and used to refer to “outside” or contextual
information beyond the scope of the immediate dataset. For examples
of this, see the Appendix.

5.2 Automatically Created Annotations
In Figure 4, the first step in the annotations workflow is “Create Anno-
tations.” This only needs to be done one time, by parsing through each
data attribute (and combo attribute) and identifying its POIs. Each POI
creates one annotation. However, there is a problem in that this gener-
ates an overwhelming number of annotations. There might be far too
many to simply append to the TSI. Our solution is only to show the
most relevant or important ones.

To determine which annotations are “important,” we use the notion
that each created annotation has a score, represented as a single, nu-
merical value. More than this, POIs and data attributes have their own
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3.2 Example TSI: US Immigration 1830-2010

We illustrate a built TSI through an example use case, shown in Figure
1. This TSI tells a story about immigration trends in the United States
from 1830-2010 (data from [3, 4]). The temporal layout shows the
percent of immigrants for each decade based on country (or region)
of origin. Each timestep sums to 100%, which is intuitively commu-
nicated by the use of a stacked graph. The layers for Ireland, Russia,
and Mexico have been highlighted with bright colors. Above this, data
snapshots are cartographic maps; each state is colored according to its
dominant immigrant population.

The combination of the stacked graph and map snapshots show im-
migration has dramatically evolved in two ways: the countries that
people are coming from, and the states they are moving to. To empha-
size that the trends of Ireland and Mexico have mirrored each other,
selected annotations describe these two data layers with playful text.
They direct the viewer’s attention: Irish immigrants once made up al-
most half of all immigrants to the United States but have presently
dwindled to only a small fraction. Meanwhile, Mexican immigration
has gone the opposite direction.

4 TEMPORAL LAYOUT AND DATA SNAPSHOTS

We now give a high-level overview of a TSI’s first two visual compo-
nents: the temporal layout and data snapshots.

4.1 Temporal Layout

The temporal layout shows a time-varying view of the data; it is cen-
trally placed and oriented horizontally from left-to-right. The choice
of visualization here depends on a TSI author’s discretion, and so
should be carefully considered. For independent, numeric time se-
ries (such as stock prices), a line chart is a straightforward choice. A
streamgraph can be utilized if showing the temporal data magnitudes is
an important consideration, such as in the immigration example (Fig-
ure 1). For categorical or flow data, a technique like storylines or
alluvial diagrams should be used.

Our current implementation uses these four techniques as options
for the temporal layout. As they are well-known conventional tech-
niques, they should be effective when used for presentation to a gen-
eral audience. In theory however, any time-dependent visualization
technique could be used for this component, though more complex or
abstract views introduce potential interpretation issues.

4.2 Data Snapshots

Data snapshots are a comic strip set of visual frames, showing a view
of the dataset that is orthogonal to the temporal layout. In the immi-
gration example, this is a cartographic view of the data. Snapshots
are appended to a track above the temporal layout, with placement
corresponding to their associated timesteps. They are meant to pro-
vide additional insight into the temporal evolution of the dataset and
help give a holistic summary of the data. Like the temporal layout,
the choice of visualization technique used in the frames is left to the
author. Our current TSI prototype stores data snapshots as sets of im-
age files; relevant ones are retrieved and appended to the display. In
the case studies (Section 6.1), spatial and volume renderings are used,
but more abstract or projectional mappings might be appropriate de-
pending on the context. These can include scatter plots, bar charts,
heatmaps, video stills, and other dimensionality reduction techniques.

The set of data snapshots shown is dependent on a set of chosen
timesteps. To assist a TSI author in selecting appropriate snapshots,
we provide three techniques for automatic timestep selection: mod-
ulo timestep indexing, entropy threshold selection, and hierarchical
segmentation. To use one of these, a user first selects one or more
temporal attributes in the dataset. The heuristic is applied to the set
of attributes and returns a set of timesteps. Figure 3 shows how the
techniques would select timesteps for an example attribute: a numeri-
cal data vector in a line chart. For each chosen timestep, the relevant
snapshot image is retrieved and appended to the TSI.

Fig. 3: Automatic timestep selection for a line chart based on three
techniques. Modulo timestep indexing generates a snapshot every m
steps. Entropy threshold selection generates snapshots when the data
change passes a denoted limit. Hierarchical segmentation generates a
user-defined number of segments (the alternating gray-white bars) and
picks a single step to “represent” each.

Modulo Timestep Index This is the typical timestep selection
process employed in simulations where data is saved at periodic in-
tervals; i.e., a snapshot is selected for every m number of steps. This
returns a linearly discretized selection of the data snapshots with con-
stant step size.

Entropy Threshold The entropy is calculated between each suc-
cessive timestep (or set of timesteps). When overall entropy exceeds
a defined limit, that timestep is selected. This technique emphasizes
timestep selection based on large-scale data changes, as opposed to
generally flat or stable data.

Hierarchical Segmentation The delta (change) at each timestep
is calculated. A hierarchical clustering is applied to the deltas to gen-
erate a hierarchical segmentation over all timesteps, then a cut is made
for the desired number of segments to return. A “representative”
timestep is selected for each segment based on a desired statistical
metric (such as mean delta value or standard deviation). We currently
use mean delta value to determine this.

We note here that these three techniques are based on a data ab-
straction; that is, snapshot selection is not linked to the chosen tempo-
ral layout technique or the currently displayed set of annotations. The
reasoning for this is that an author might choose snapshot timesteps
based on attributes disconnected to (independently of) these compo-
nents. The used data attributes might not be shown in the temporal
layout and are only included in the dataset specifically for snapshot
selection.

Once loaded, appended snapshots can be interactively dragged, re-
moved, or reset based on designer preferences. If a heuristic gives
insufficient results then another may be tried or timesteps may be fully
manually selected.

5 ANNOTATIONS

Annotations visually point to salient data features and/or elements.
They are the third component of a TSI, overlaid and anchored onto
the temporal layout.

A major aspect of the TSI framework is its workflow for automatic
annotation support, shown in Figure 4. This section describes this
workflow. We start by explaining what data POIs are and how they
are leveraged for annotation creation. Once created, annotations are
scored and ranked. Before display, they must be properly positioned.

Fig. 4: The workflow for automatic annotations supports creation,
placement, and interaction. Annotations are initially created from the
POIs of data attributes. Based on POI type and attribute scores, the
annotations are scored, filtered, ranked, placed, and displayed. User
interaction triggers a prior step in the process.

This entails filtering and selecting only the most highly ranked and rel-
evant annotations, for which we introduce two placement algorithms.
Interacting with the system, such as zooming, panning, deleting an un-
desired annotation, or updating an attribute’s score triggers a prior step
in the annotations workflow, forcing annotation re-ranking and poten-
tially causing new annotations to be shown and old ones removed.
This forms a user-in-the-loop cycle, where ranked annotations can be
reviewed and used to guide analysis and exploration. Desired annota-
tions can be pinned to the display, to explain relevant results or high-
light aspects of the data.

5.1 Data Points of Interest (POIs)
An annotation describes a single aspect of the underlying dataset,
which we refer to as a point of interest (POI). Conversely stated, a
POI can be described using a single annotation. POIs are properties
of data attributes like value extremas or changes, starts and stops, cat-
egorical, state, or flow changes, stable regions, and more. Though a
single POI can apply to multiple elements of a data attribute (a flat
region may span multiple timesteps, for example), it still refers to a
single feature of the data. Hence, we use the term POI only and not
ROI (region of interest) for description.

As noted in Section 2.4, annotations are either additive or observa-
tional depending on whether they reference visualized data or add ad-
ditional information to the view. Our system allows for additive anno-
tations to be manually created or queried for against background data
attributes not shown in the temporal layout; they can also be loaded in
the initial set of data used to build the TSI.

5.1.1 Types of POIs
Figure 5 displays examples of observational POIs that can be extracted
from three types of data attributes: numerical vectors, storylines, and
alluvial diagrams. Each shown POI corresponds to a single annotation.

Numerical Vector POIs A time series can be shown using a line
chart (as in Figure 5a) or a stacked graph. The data used to show
each line (or stacked graph layer) in the chart is an independent array
of numbers (also called a numerical vector). By examining the vec-
tor’s value features, numerical POIs can be extracted: the first and last
instances of numbers, minimas and maximas, flat regions, and slope
changes (increases and decreases over a set of timesteps).

Storyline POIs Figure 5b shows examples of POIs in storylines.
Line-specific POIs are categorical, in that they describe the current
state of a line (or set of lines). For example, line L1 starts at step 1 in
group A, changes to group B at step 5, and ends at step 6. Alterna-
tively, numerical POIs describe the groups that lines enter and leave.
Group A starts at step 1 with a size of 2 (it contains two lines), has a
maximum of 3 at steps 2 and 3, and so forth. Group A’s numeric size
vector would thus be [2, 3, 3, 1, null, null].

Alluvial Diagram POIs Figure 5c notes examples POIs in allu-
vial diagrams, which show data flow between groups over time. Flow
size can change by having a part of a stream split off and go to an-
other group, or by having flow from another group merge into the cur-
rent stream. These POIs indicate the group’s size has changed. They

(a) Time Series POIs (b) Storyline POIs.

(c) Alluvial Diagram POIs.

Fig. 5: Data aspects (termed POIs, or points of interest) that can be
extracted from three types of time-dependent visualizations.

are both numeric and categorical because the flow changes a numeric
amount and the groups that the flow goes between are qualitatively
distinct. When flow is constant between steps, it is either in a stable
region (i.e., no splitting or merging to other groups) or because the en-
tire flow changes groups together. Numeric POIs based on group size
can also be extracted, as is done for storyline groups.

POIs from Combined Attributes For each of the example visu-
alizations, we note there are POIs that can be extracted from “combo
attributes.” A combo attribute is when two or more data attributes are
combined via logical operators. In the storyline example, the maxi-
mum size of group [B AND C] is 3 at step 5. Line [L1 AND L3] first
enters group B at step 5; line [L1 OR L3] does so at step 4. Lines can
also be combined with groups to form combo attributes, for example,
Line [L1 AND A] is the subset of line L1 when it is part of group A.

5.1.2 Manually Queried and Additive POIs
Since data attributes are either numeric or categorical vectors, they can
be stored in a manner that permits SQL querying. Our TSI implemen-
tation stores data attributes using an HSQLDB cache [2] and includes
a query interface. This allows for searching of more complex POIs
that are not automatically extracted, as well as access to background
data attributes not shown in the temporal display. In the cosmology
case study (Section 6.1.2), one participant noted for his datasets he
would use this feature to identify timesteps where data attributes are
50% of their maximum value. When a query is run, it creates a single
annotation based on the timesteps(s) and attribute(s) it applies to.

If a manual query references only background data, then an addi-
tive annotation is created. This type of annotation is anchored to the
timestep(s) to which it refers. Additive annotation can also be loaded
at TSI initialization time, and used to refer to “outside” or contextual
information beyond the scope of the immediate dataset. For examples
of this, see the Appendix.

5.2 Automatically Created Annotations
In Figure 4, the first step in the annotations workflow is “Create Anno-
tations.” This only needs to be done one time, by parsing through each
data attribute (and combo attribute) and identifying its POIs. Each POI
creates one annotation. However, there is a problem in that this gener-
ates an overwhelming number of annotations. There might be far too
many to simply append to the TSI. Our solution is only to show the
most relevant or important ones.

To determine which annotations are “important,” we use the notion
that each created annotation has a score, represented as a single, nu-
merical value. More than this, POIs and data attributes have their own
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scores. To calculate an annotation’s overall score, the scores of its
relevant attribute and POI are multiplied together:

scoreannotation = scoreattribute · scorePOI

In this way, every annotation has its own score. Once the full set
of created annotations has been scored, they can simply be sorted into
a list. The highest ranked annotations are deemed the most impor-
tant. (We give both manually-queried and loaded additive annotations
the highest possible score/rank since they are assumed a priori to be
important to the user, as they were manually created/loaded.)

As an example of scoring and ranking two automatic annotations,
consider a data attribute A with a score of 50 (scoreA = 50), and an
attribute B with a score of 25 (scoreB = 25). The POI denoting an
attribute’s global maximum has a score of 10 (scoremax=10). With
these values, the annotation denoting A’s maximum will have a score
of 500 while for B it will be 250. Ranking is by overall score, so the
annotation MaxA will be ranked above MaxB.

Before display, the list of ranked annotations is filtered. Some an-
notations are discarded because they cannot currently be shown on the
view. If the user has zoomed in on part of the display then annotations
outside of the current window cannot be shown. Alternatively, an ap-
plied filter can hide some POIs types from display. When annotations
are removed as candidates for display, lower-ranked annotations in the
list move up. Annotations are selected and placed on the temporal
layout based on the remaining list. First however, we discuss how
automatic annotations scores are determined.

5.2.1 Scoring Data Attributes
Our implemented system includes an interface where a user sets the
score for both data attributes and POI types. Combo attributes may be
created in this dialog by combining two currently selected attributes.
Attribute scores can also be saved to a configuration file to be applied
at load time and then tweaked as needed. While our current system
only supports manual attribute scoring, it is possible to automatically
derive attribute scores and create combo attributes based on the dataset
properties. See Section 7.2 for discussion of this.

5.2.2 Determining POI Scores
Like data attributes, POI types can be manually scored by the user.
In the scoring example from the start of Section 5.2, the POI type
“maximum” had a score of 10 (scoremax = 10). This POI is considered
“global” because each attribute only has one maximum value. (This
is true even if the maximum happens over multiple timesteps. The
value is the same.) Global POIs include features like “maximum,”
“minimum”, “first,” and “last.”

However, what about local maximas? For a numerical attribute,
these might occur multiple times; each instance is a POI. Intuitively,
smaller extremas should be given less weight than larger ones, and
their specific POI and subsequent annotation scores should be lower.
Some time series compression algorithms use this assumption to
weight extremas. Local extrema weights are determined using a dis-
tance function (such as the absolute distance between other extremas);
very low-weighted points are then discarded from the compressed line.
To weight local POIs, we use a modified version of the compression
algorithm from [13] which has been extended to weight slopes and flat
regions (where larger slopes and flat regions have higher weight).

To turn a local POI weight into a POI score, we normalize over
the overall set of local POI weights for that attribute. For example,
if the POI score for local maxima is set to 5 (scorelocal max = 5) and
an attribute has three local maximas with compression weights of 28,
120, and 200, the corresponding POI scores are .7, 3, and 5.

Local POIs also exist in categorical data attributes. As an example
of local POIs in storylines, first consider that a line can stay inside a
group for multiple timesteps. In Figure 5b, line L1 goes from group A
to B at step 5, a “group change” POI. The weight for this is based on
how long L1 resided in group A before leaving; a longer time means
a higher weight. Alluvial diagram POIs can be similarly weighted,
except that the weight must also be scaled by the group’s overall flow
at the relevant timestep(s) of the POI.

Fig. 6: There are five possible ways to place an annotation, depending
on the timestep(s) and attribute(s) it maps to: (A1) a single timestep
and vertical position. (A2 and A3) a single timestep and multiple verti-
cal positions, or vice versa. (A4) a range of both timesteps and vertical
positions. (A5) a timestep directly.

5.3 Annotation Placement

After annotations are created, scored, filtered, and ranked, they can be
placed onto the temporal layout. Depending on an annotation’s type,
whether it is additive or observational, there are five ways it can be an-
chored to the view (Figure 6). These are determined by the timestep(s)
and attribute(s) the annotation maps to, and the choice of the temporal
layout. Observational annotations can map to a single (x,y) spot, to a
spot fixed in one direction but with a range of positions in the other,
or with a range in both dimensions. Additive annotations refer to a
timestep (or set of timesteps) directly.

To determine how annotations are positioned on the temporal lay-
out, we provide two placement algorithms (pseudocode is provided
in the Appendix). The first, called the top-n ranked placement algo-
rithm, chooses annotations for display based solely on rank. If a user
is concerned only with seeing the highest-scored annotations (perhaps
to focus his/her analysis on specific attributes or POIs types), this al-
gorithm works well by always appending them to the display.

The second algorithm, called the density-based placement algo-
rithm, is designed to distribute annotations over the display while
keeping it from becoming cluttered. It does this by applying a weight
field above the temporal layout and using a greedy placement strategy
to try and place annotations. Prior-placed annotations exert a weight
on the field, so lower-ranked annotations may not be able to be placed
if they are below the threshold at their possible anchor spot(s).

5.3.1 Top-n Ranked Placement Algorithm

This algorithm takes as input the ranked list of annotations and a num-
ber n. It does a cut at the nth position, and the remaining set of anno-
tations are then placed at their most “prominent positions.”

An annotation’s most prominent position is determined by the fol-
lowing logic: For additive annotations that map to a timestep only, the
annotation is anchored at that timestep’s x-position and halfway be-
tween the top of the temporal layout and the top of the view window.
If the annotation maps to a single (x,y) position, that spot is used. If
it maps to more than one timestep, the middle one is chosen for the
x-position. Determining the y-spot depends on the data attribute the
annotation maps to. If a single line (such as in a line chart or story-
line), then the y-position of the line is used. For a set of lines, the
middle-positioned one is used. If the annotation maps to a layer or
group with a vertical height (such as a streamgraph layer or storyline
group), the group with the largest vertical height at that timestep is se-
lected and its middle y-position used. If the attribute maps to a combo
attribute that contains both lines and groups, the line’s middle-most
y-position is used.

The top-n ranked placement algorithm has the advantage of show-
ing only the highest scored (i.e., the “most important”) annotations
and doing so in their most prominent locations. However, this can
sometimes cause occlusion when multiple annotations anchor to the

Fig. 7: An example of trying to place four annotations on a stream-
graph using the density-based placement algorithm. A1 is placed at
timestep 4 in layer A. Due to A1’s score affecting the weight field, A2
finds the lowest-weighted vertical position in layer A at timestep 3. A3
cannot be placed, because its score is under the density field’s weight
at all positions in layer B at timestep 3. A4 has a lower score than A3,
but can be placed because the density field has no weight there.

same (x,y) position. In this bothers the user, s/he can drag annotation
anchors to other available positions to resolve this issue.

5.3.2 Density-Based Placement Algorithm

In the density algorithm, each annotation placed on the view applies
a weight to its surrounding region. More important annotations (ones
with a higher score) have a larger influence on their immediate area. If
a region has no annotations near it, a lower-scored annotation can be
appended if its score is above the field’s density weight in that area.
An area with multiple, highly-scored annotations will exert a strong
weight on the surrounding region, keeping that part of the display
from showing nearby, lower-scored annotations and becoming clut-
tered. Figure 7 shows an example of using this algorithm to try and
place four annotations.

This algorithm works as follows: Starting with the highest ranked
annotation, place it according to its “prominent position.” Apply a ker-
nel density estimate [37] using its score to the surrounding area. The
distribution function can be user-defined, but we find both a normal
and linear distribution work well. Next, begin iterating down the list
of annotations. For each, of the potential (x,y) spots it is allowed to be
placed, choose the one that has the lowest weight in the density field.
If it’s score is greater than the field’s weight at this position, place the
annotation on the view and apply its score to the density field. If the
annotation can be equally placed at multiple (x,y) positions, choose the
one closest to its “prominent position.” Continue iterating until reach-
ing the end of the list or until all remaining annotations are below the
field’s lowest threshold score (a number defined by the user).

When a user updates the view window, the list of possible anno-
tations for display is reset and refiltered, so an annotation that was
previously removed due to the weight of another might now be shown.
This allows for annotations to “pop up” and fill in new areas as the
user zooms and pans around the temporal layout. Another feature of
this technique is that annotations not fixed to a single (x,y) position are
allowed to “slide” to less weighted parts of the TSI when interaction
happens. If the user doesn’t like an annotation, deleting it allows for
lower ranked annotations to appear in its vacated space.

6 IMPLEMENTATION AND EVALUATION

We have implemented a prototype application for TSIs, written in
Java and Processing. For temporal layouts, it allows display with line
charts, streamgraphs, and storylines. Data snapshots are stored as im-
age files which are retrieved based on selected timesteps.

Annotations are shown as text boxes connected to their anchors by
springs. A force directed layout ensures the text boxes achieve a nice
distribution and do not occlude each other. For stylizing a TSI, force
direction can be disabled and text boxes dragged to preferred posi-

Fig. 8: Our TSI implementation’s interface (viewer window and
Helper panel) showing EpiSimS data with a streamgraph. The Helper
panel’s currently selected tab is used for interacting with annotations.

tions. For each POI type, we use default “pretty print” sentences when
generating annotations, but these can be edited.

Manually-created annotations default to the highest rank, so they
are always placed (unless outside the current view window). Annota-
tions can also be “pinned” to the display. Our system lets users drag
an annotation’s anchor between its available (x,y) positions. Weight-
ing parameters for the density-based placement algorithm can be ad-
justed, including the weight distribution radius and the field’s lowest
threshold score. POIs and attributes deemed unimportant by a user
can either be deleted or have their scores set to zero. This ensures
any referencing annotations will be ranked last in the sorted list and
higher-scored annotations shown first.

Our prototype includes a separate Helper panel in addition to the
main TSI view (shown in Figure 8). This panel handles most system
interactions such as selecting a placement algorithm or editing data
snapshot logic. It also displays the list of all created annotations (even
ones not shown on the display) to allow for inspection and searching
of specific annotation types that can be pinned to view.

6.1 Evaluation
To validate our framework and demonstrate how TSIs can be used “in
the wild,” we performed two case studies with scientific datasets. The
first was done over two sessions with three members of the EpiSimS
team: a programmer and statistician both with 20+ years of experi-
ence, and a third-year postdoctoral physicist. The second case study
was conducted with six cosmology researchers: a single session with
three graduate students and one postdoctoral scholar, and two separate
online interviews performed with graduate students. In both studies,
participants interacted with our system and built TSIs (though the on-
line sessions were demonstration only). Based on feedback and ob-
servations, we feel that TSIs are effective in assisting domain users
analyzing their data and creating succinct, narrative visualizations.

6.1.1 Case Study One: EpiSimS Simulation

EpiSimS is a scalable, stochastic, agent-based model for infectious
disease within the United States [30]. Based on input parameters
like transmission rate, incubation period, mosquito population, and
response mechanisms, a disease is introduced into a susceptible popu-
lation where it spreads through agent-to-agent interaction. In a normal
(non-TSI) workflow, team members select a set of input parameters
and run an instance of the simulation. To examine the output data at-
tributes, they usually create line charts and/or spatial views using a
conventional tool like R or matplotlib.

With a TSI, these views are combined. Figure 8 shows a built TSI
from the study’s first session (data from [31]). A streamgraph shows
three important temporal disease attributes. Data snapshots show the
spatial disease evolution. With the top-n ranked placement algorithm,
the team identified the maximum extremas of the three temporal at-
tributes and pinned their annotations to the view, along with an anno-
tation noting the initial infection seeding value (the POI type of “First”
for the became infected attribute). Finally, a manually-queried anno-
tation marks this simulation’s transition into “pandemic” status.
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scores. To calculate an annotation’s overall score, the scores of its
relevant attribute and POI are multiplied together:

scoreannotation = scoreattribute · scorePOI

In this way, every annotation has its own score. Once the full set
of created annotations has been scored, they can simply be sorted into
a list. The highest ranked annotations are deemed the most impor-
tant. (We give both manually-queried and loaded additive annotations
the highest possible score/rank since they are assumed a priori to be
important to the user, as they were manually created/loaded.)

As an example of scoring and ranking two automatic annotations,
consider a data attribute A with a score of 50 (scoreA = 50), and an
attribute B with a score of 25 (scoreB = 25). The POI denoting an
attribute’s global maximum has a score of 10 (scoremax=10). With
these values, the annotation denoting A’s maximum will have a score
of 500 while for B it will be 250. Ranking is by overall score, so the
annotation MaxA will be ranked above MaxB.

Before display, the list of ranked annotations is filtered. Some an-
notations are discarded because they cannot currently be shown on the
view. If the user has zoomed in on part of the display then annotations
outside of the current window cannot be shown. Alternatively, an ap-
plied filter can hide some POIs types from display. When annotations
are removed as candidates for display, lower-ranked annotations in the
list move up. Annotations are selected and placed on the temporal
layout based on the remaining list. First however, we discuss how
automatic annotations scores are determined.

5.2.1 Scoring Data Attributes
Our implemented system includes an interface where a user sets the
score for both data attributes and POI types. Combo attributes may be
created in this dialog by combining two currently selected attributes.
Attribute scores can also be saved to a configuration file to be applied
at load time and then tweaked as needed. While our current system
only supports manual attribute scoring, it is possible to automatically
derive attribute scores and create combo attributes based on the dataset
properties. See Section 7.2 for discussion of this.

5.2.2 Determining POI Scores
Like data attributes, POI types can be manually scored by the user.
In the scoring example from the start of Section 5.2, the POI type
“maximum” had a score of 10 (scoremax = 10). This POI is considered
“global” because each attribute only has one maximum value. (This
is true even if the maximum happens over multiple timesteps. The
value is the same.) Global POIs include features like “maximum,”
“minimum”, “first,” and “last.”

However, what about local maximas? For a numerical attribute,
these might occur multiple times; each instance is a POI. Intuitively,
smaller extremas should be given less weight than larger ones, and
their specific POI and subsequent annotation scores should be lower.
Some time series compression algorithms use this assumption to
weight extremas. Local extrema weights are determined using a dis-
tance function (such as the absolute distance between other extremas);
very low-weighted points are then discarded from the compressed line.
To weight local POIs, we use a modified version of the compression
algorithm from [13] which has been extended to weight slopes and flat
regions (where larger slopes and flat regions have higher weight).

To turn a local POI weight into a POI score, we normalize over
the overall set of local POI weights for that attribute. For example,
if the POI score for local maxima is set to 5 (scorelocal max = 5) and
an attribute has three local maximas with compression weights of 28,
120, and 200, the corresponding POI scores are .7, 3, and 5.

Local POIs also exist in categorical data attributes. As an example
of local POIs in storylines, first consider that a line can stay inside a
group for multiple timesteps. In Figure 5b, line L1 goes from group A
to B at step 5, a “group change” POI. The weight for this is based on
how long L1 resided in group A before leaving; a longer time means
a higher weight. Alluvial diagram POIs can be similarly weighted,
except that the weight must also be scaled by the group’s overall flow
at the relevant timestep(s) of the POI.

Fig. 6: There are five possible ways to place an annotation, depending
on the timestep(s) and attribute(s) it maps to: (A1) a single timestep
and vertical position. (A2 and A3) a single timestep and multiple verti-
cal positions, or vice versa. (A4) a range of both timesteps and vertical
positions. (A5) a timestep directly.

5.3 Annotation Placement

After annotations are created, scored, filtered, and ranked, they can be
placed onto the temporal layout. Depending on an annotation’s type,
whether it is additive or observational, there are five ways it can be an-
chored to the view (Figure 6). These are determined by the timestep(s)
and attribute(s) the annotation maps to, and the choice of the temporal
layout. Observational annotations can map to a single (x,y) spot, to a
spot fixed in one direction but with a range of positions in the other,
or with a range in both dimensions. Additive annotations refer to a
timestep (or set of timesteps) directly.

To determine how annotations are positioned on the temporal lay-
out, we provide two placement algorithms (pseudocode is provided
in the Appendix). The first, called the top-n ranked placement algo-
rithm, chooses annotations for display based solely on rank. If a user
is concerned only with seeing the highest-scored annotations (perhaps
to focus his/her analysis on specific attributes or POIs types), this al-
gorithm works well by always appending them to the display.

The second algorithm, called the density-based placement algo-
rithm, is designed to distribute annotations over the display while
keeping it from becoming cluttered. It does this by applying a weight
field above the temporal layout and using a greedy placement strategy
to try and place annotations. Prior-placed annotations exert a weight
on the field, so lower-ranked annotations may not be able to be placed
if they are below the threshold at their possible anchor spot(s).

5.3.1 Top-n Ranked Placement Algorithm

This algorithm takes as input the ranked list of annotations and a num-
ber n. It does a cut at the nth position, and the remaining set of anno-
tations are then placed at their most “prominent positions.”

An annotation’s most prominent position is determined by the fol-
lowing logic: For additive annotations that map to a timestep only, the
annotation is anchored at that timestep’s x-position and halfway be-
tween the top of the temporal layout and the top of the view window.
If the annotation maps to a single (x,y) position, that spot is used. If
it maps to more than one timestep, the middle one is chosen for the
x-position. Determining the y-spot depends on the data attribute the
annotation maps to. If a single line (such as in a line chart or story-
line), then the y-position of the line is used. For a set of lines, the
middle-positioned one is used. If the annotation maps to a layer or
group with a vertical height (such as a streamgraph layer or storyline
group), the group with the largest vertical height at that timestep is se-
lected and its middle y-position used. If the attribute maps to a combo
attribute that contains both lines and groups, the line’s middle-most
y-position is used.

The top-n ranked placement algorithm has the advantage of show-
ing only the highest scored (i.e., the “most important”) annotations
and doing so in their most prominent locations. However, this can
sometimes cause occlusion when multiple annotations anchor to the

Fig. 7: An example of trying to place four annotations on a stream-
graph using the density-based placement algorithm. A1 is placed at
timestep 4 in layer A. Due to A1’s score affecting the weight field, A2
finds the lowest-weighted vertical position in layer A at timestep 3. A3
cannot be placed, because its score is under the density field’s weight
at all positions in layer B at timestep 3. A4 has a lower score than A3,
but can be placed because the density field has no weight there.

same (x,y) position. In this bothers the user, s/he can drag annotation
anchors to other available positions to resolve this issue.

5.3.2 Density-Based Placement Algorithm

In the density algorithm, each annotation placed on the view applies
a weight to its surrounding region. More important annotations (ones
with a higher score) have a larger influence on their immediate area. If
a region has no annotations near it, a lower-scored annotation can be
appended if its score is above the field’s density weight in that area.
An area with multiple, highly-scored annotations will exert a strong
weight on the surrounding region, keeping that part of the display
from showing nearby, lower-scored annotations and becoming clut-
tered. Figure 7 shows an example of using this algorithm to try and
place four annotations.

This algorithm works as follows: Starting with the highest ranked
annotation, place it according to its “prominent position.” Apply a ker-
nel density estimate [37] using its score to the surrounding area. The
distribution function can be user-defined, but we find both a normal
and linear distribution work well. Next, begin iterating down the list
of annotations. For each, of the potential (x,y) spots it is allowed to be
placed, choose the one that has the lowest weight in the density field.
If it’s score is greater than the field’s weight at this position, place the
annotation on the view and apply its score to the density field. If the
annotation can be equally placed at multiple (x,y) positions, choose the
one closest to its “prominent position.” Continue iterating until reach-
ing the end of the list or until all remaining annotations are below the
field’s lowest threshold score (a number defined by the user).

When a user updates the view window, the list of possible anno-
tations for display is reset and refiltered, so an annotation that was
previously removed due to the weight of another might now be shown.
This allows for annotations to “pop up” and fill in new areas as the
user zooms and pans around the temporal layout. Another feature of
this technique is that annotations not fixed to a single (x,y) position are
allowed to “slide” to less weighted parts of the TSI when interaction
happens. If the user doesn’t like an annotation, deleting it allows for
lower ranked annotations to appear in its vacated space.

6 IMPLEMENTATION AND EVALUATION

We have implemented a prototype application for TSIs, written in
Java and Processing. For temporal layouts, it allows display with line
charts, streamgraphs, and storylines. Data snapshots are stored as im-
age files which are retrieved based on selected timesteps.

Annotations are shown as text boxes connected to their anchors by
springs. A force directed layout ensures the text boxes achieve a nice
distribution and do not occlude each other. For stylizing a TSI, force
direction can be disabled and text boxes dragged to preferred posi-

Fig. 8: Our TSI implementation’s interface (viewer window and
Helper panel) showing EpiSimS data with a streamgraph. The Helper
panel’s currently selected tab is used for interacting with annotations.

tions. For each POI type, we use default “pretty print” sentences when
generating annotations, but these can be edited.

Manually-created annotations default to the highest rank, so they
are always placed (unless outside the current view window). Annota-
tions can also be “pinned” to the display. Our system lets users drag
an annotation’s anchor between its available (x,y) positions. Weight-
ing parameters for the density-based placement algorithm can be ad-
justed, including the weight distribution radius and the field’s lowest
threshold score. POIs and attributes deemed unimportant by a user
can either be deleted or have their scores set to zero. This ensures
any referencing annotations will be ranked last in the sorted list and
higher-scored annotations shown first.

Our prototype includes a separate Helper panel in addition to the
main TSI view (shown in Figure 8). This panel handles most system
interactions such as selecting a placement algorithm or editing data
snapshot logic. It also displays the list of all created annotations (even
ones not shown on the display) to allow for inspection and searching
of specific annotation types that can be pinned to view.

6.1 Evaluation
To validate our framework and demonstrate how TSIs can be used “in
the wild,” we performed two case studies with scientific datasets. The
first was done over two sessions with three members of the EpiSimS
team: a programmer and statistician both with 20+ years of experi-
ence, and a third-year postdoctoral physicist. The second case study
was conducted with six cosmology researchers: a single session with
three graduate students and one postdoctoral scholar, and two separate
online interviews performed with graduate students. In both studies,
participants interacted with our system and built TSIs (though the on-
line sessions were demonstration only). Based on feedback and ob-
servations, we feel that TSIs are effective in assisting domain users
analyzing their data and creating succinct, narrative visualizations.

6.1.1 Case Study One: EpiSimS Simulation

EpiSimS is a scalable, stochastic, agent-based model for infectious
disease within the United States [30]. Based on input parameters
like transmission rate, incubation period, mosquito population, and
response mechanisms, a disease is introduced into a susceptible popu-
lation where it spreads through agent-to-agent interaction. In a normal
(non-TSI) workflow, team members select a set of input parameters
and run an instance of the simulation. To examine the output data at-
tributes, they usually create line charts and/or spatial views using a
conventional tool like R or matplotlib.

With a TSI, these views are combined. Figure 8 shows a built TSI
from the study’s first session (data from [31]). A streamgraph shows
three important temporal disease attributes. Data snapshots show the
spatial disease evolution. With the top-n ranked placement algorithm,
the team identified the maximum extremas of the three temporal at-
tributes and pinned their annotations to the view, along with an anno-
tation noting the initial infection seeding value (the POI type of “First”
for the became infected attribute). Finally, a manually-queried anno-
tation marks this simulation’s transition into “pandemic” status.
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(a) Susceptibility parameter = 1.0.

(b) Susceptibility parameter = 0.5.

Fig. 9: Comparing two EpiSimS runs using annotated storylines (with
data snapshots hidden) gives insight into how varying a susceptibility
parameter between two simulation runs affects disease saturation rates
in a population (where every person has moved into red groups).

In Figure 9, we show two storyline-based TSIs. These were created
to show how using the density placement algorithm can help explain
the visual features in a complex plot. In this case, two simulation out-
puts are compared to each other. Due to space constraints, discussion
of these TSIs can be found in the Appendix.

Based on discussion with EpiSimS team members during the two
conducted sessions of building TSIs and using the system, we received
feedback about many aspects of the TSI workflow, summed below:

For data summarization and presentation: “I like these Temporal
Summary Images. They are easy to get feedback. For flu we might
be interested in one set of lines, but for the mosquito-borne diseases
something else. Having the snapshots up at the top gives you a feel for
the geography, where the disease is going.” “There is a lot of benefit
to this. These are the pictures I want to put in my publications.”

For the annotations workflow: “The annotations help point to what I
care about. I need to know, how many people are infected at this time?
How many are dead?” and “The automatic generation of annotations
is very helpful to quickly see when significant changes occurred.”

For the streamgraph-based TSIs, the team used the top-n ranked
placement algorithm to explore the data. “It’s good to quickly see the
highlights because you can narrow down what you want to further
explore. Really good idea, really useful.” The density placement algo-
rithm was not seen as useful for the streamgraph example (Figure 8),
due to the relatively consistent sloping behavior of the disease. “It’s
too simple for the other [density] placement technique.” Its utility was
noted instead for the storyline figures, which were much more visually
complex. “Nice to see when and what significant changes occurred, to
note when behaviors happened. Easier to explore this way.”

6.1.2 Case Study Two: Millennium Cosmological Simulation

ΛCDM cosmological models such as the Millennium simulation [27,
38] are concerned with the structure and formation of the universe. For
the second case study, we analyze galaxy properties that occur [8]. For
a dataset, we retrieved galaxies attached to the main progenitor branch
nodes of the six largest merger trees. For these galaxies, we view two
important properties: stellar mass (SM) and star formation rate (SFR),
which can be used to show structure and formation behavior trends.
They occur in the context of an important universe-wide “astronomical
POI,” which marks the transition from the matter-dominated era to the
dark energy-dominated era at approximately redshift = 2.

Figure 10 shows a TSI from this study. Line charts show the SM
and SFR over redshift for the six selected merger trees. Two sets of
data snapshots highlight the spatial formation of the Alpha and Delta
merger trees. For both line charts, an additive annotation at redshift

(a) Data snapshots for the Alpha merger tree.

(b) Data snapshots for the Delta merger tree.

(c) Temporal layout and annotations showing stellar mass over redshift.

(d) Temporal layout and annotations showing star formation rate over redshift.

Fig. 10: TSI for showing galaxy properties in a cosmological simula-
tion. Annotations highlight the juxtaposition of the star formation rate
and stellar mass properties by describing two of the merger trees.

= 2 marks the “astronomical POI.” Other annotations highlight salient
extremas of the Alpha and Delta trees (the red and purple lines).

Juxtaposing the SM and SFR line charts highlights how the galaxy
properties exhibit important behavior shifts on opposite sides of the
redshift = 2 annotation. For SM, most growth happens in the dark
energy-dominated era (to the right of redshift = 2). Annotations mark
both the rapid increases and maximums for the Alpha and Delta trees.
The Delta tree shows a particularly interesting rapid slope SM growth
(i.e., slope change) from redshift 0.516 to 0.171. In the SFR chart,
most activity happens to the left of redshift = 2. Annotations on the
Alpha tree highlight that it has a large peak but then drops off for the
rest of the simulation. Delta’s maximum peak also occurs to the left
of redshift = 2, but annotations note multiple local peaks to the right
of it, including one well into the dark-energy dominated era. This
happens at redshift 0.171, which coincides with its time period of rapid
SM increase. This odd behavior could warrant further investigation of
Delta’s raw merger tree data (as noted by study participants).

Feedback and discussion from the cosmology participants was more
mixed than the EpiSimS team. While most liked the TSI framework
and saw its techniques as an improvement to their normal workflow,
one online session participant stated he did not believe the TSI ap-
proach would be useful for his needs. Referring to the observational
annotations, he felt that, “labeling these only clutters the image.”
Other users felt differently though; their comments are curated below:

Automatic annotations were able to give an initial sense of the data:
“The notes are nice for giving a quick order of things like order of
magnitude estimate.” For more subtle or derived POIs, one participant
would switch to querying. “[Then] the manual queries are very useful.
The things I look for depending on the graph change so much it might
be unreasonable for a single system to cover all the criteria.” This was
echoed in two other users, who felt that annotations might have trouble
showing the underlying significance or reasoning of a data POI:

One participant liked having the ability to switch between the two
placement algorithms: “So I like having flexibility for annotation
placements. I think top-ranked annotations especially is useful if there
is a certain event in time you want to mark, and take stock of what the
numbers or features are there.”

In comparing TSIs to their domain tools (mainly R and Python):
“We have trouble in the community coming up with good ways of
showing graphs of things that evolve. This would definitely be use-
ful for displaying data in papers, rather than what we normally use.”
In particular, one advantage TSIs provide is their focus on storytelling:
“I like the idea of being creative in adding snapshots and/or in-figure
annotations. These things can help tell a story depending on what
specifically you’re trying to show or understand.”

7 DISCUSSION

Based on the design process and feedback from case studies, there are
a number of points that can be discussed about the current state of the
TSI framework and our prototype implementation.

7.1 Advantages of the TSI Framework
TSIs are designed to summarize data that have at least two strong di-
mensional axes, where one is always assumed to be temporal. While
this bounds the framework to time-dependent datasets (using the four
currently implemented temporal layout options), there exist a wide
range of both general- and domain-specific datasets that can leverage
our workflow for visualization creation and analysis.

Participants in both case studies noted they felt annotations guided
their analytical perception of the data, and that the “presentation” as-
pect of TSIs was very visually appealing and persuasive. While Lee et
al. have questioned if a single tool should combine both analysis and
design processes [26], based on the set of design requirements for the
TSI framework and feedback from case study participants, we feel it is
justified for this problem space. In this respect, a TSI is more powerful
than simple plotting like R or Python by because it leverages an inter-
active and analytic workflow that recommends snapshots and annota-
tions to the user. With an end result of building visual data stories, it
has advantages over a highly complex, technical, or multi-component
approach designed purely for data analysis.

The intentional use of conventional (and even simple) visual com-
ponents in a TSI is an additional strength. By not introducing novel
visual representations, an author building a TSI for presentation knows
that there is no inherent learning curve for the potential audience, es-
pecially since annotations are text-based, and can focus instead on an-
alyzing and summarizing the data.

7.2 Automatically Scoring Data Attributes
As noted in Section 5.2.1, our current system only supports manual
attribute scoring. However, it is possible to automatically derive at-
tribute scores based on dataset properties. This could be especially
useful when the number of attributes scales to an amount that makes
individual scoring difficult or time-consuming. To automatically score
time series, a distance-based metric such as Euclidean, Minkowski, or
Manhattan distance can measure the similarity between each vector;
there are similar techniques categorical data [9]. Each data attribute
can be scored based on its overall similarity to other attributes in the
dataset. A byproduct of this is that attributes found to be especially
similar can be combined to form combo attributes. Another approach
for automatic scoring is to use a data entropy or magnitude measure
to measure the dataset’s overall change or volatility and rank attributes
based on this. Combo attributes can additionally be formed by com-
bining attributes with similar scores.

7.3 Going Deeper, Wider, and into Snapshot Annotations
We currently are planning to expand our annotation creation process
in three ways beyond the temporal, POI-based tagging currently used
by the system. We can do this by going “deeper,” “wider,” and by
integrating annotations with data snapshots. To go deeper means that
we will include informational metrics or cues that help explain each
created annotation’s significance (the lack of this was noted by a par-
ticipant in the cosmology case study). Going wider means including
more types of POIs that the system recognizes such as statistical or de-
rived metrics. We also plan to allow TSI authors to save manual POI
queries that can later be retrieved to generate custom annotations, like
a stored procedure in SQL.

Finally, there are plans to integrate annotations more closely with
data snapshots. One way to do this is by allowing “data snapshot an-
notations,” where a data snapshot frame can be directly appended to
the temporal layout. This type of annotation can act as a “zoomed-in,”
data-orthogonal view for a specific data attribute on the display.

7.4 Current Design Limitations
While TSIs recommend annotations and data snapshot timesteps, for
most other system interactions there is little user guidance. That is, the
designer must explicitly choose options like which technique to use for
the temporal layout and data snapshots, and what the appropriate color
palette should be.

However, an assumption here is that TSI authors have a familiarity
with the underlying dataset. As such, they can simply choose the same
views they currently use in other plotting tools and leverage the advan-
tages the TSI framework provides. While a recommendation system
like Show Me [29] can be effective in suggesting a new visual projec-
tion to a user, the authors of that paper note that once a user has “set-
tled” on a set of preferred views that usage of this recommendation
feature dramatically drops. Therefore, the lack of recommendations
for design choices like this becomes negligible if the user knows what
general types of views work well for their data.

TSIs also provide no guidance for issues like choosing the optimal
number of data snapshots to show. Obviously, choosing too many will
clutter the display (our implementation shrinks snapshots based on the
number displayed, but there is a minimum size limit). This same clut-
tering can happen if too many annotations are appended to the display.
We note however, that while issues like this can be addressed with dif-
ferent timestep selection and placement algorithms, our system easily
allows a user to interactively modify constraints for these components.
If the view is cluttered, they can change the necessary settings to clear
the display and fix this type of problem.

While aesthetically our current TSI editing options are mostly con-
sidered “up to the task” via case study feedback, we are working on
ways to expand how a user can tweak and style the view. A recent
paper describing the GraphCoiffure system [39] presents a set of tech-
niques for improving user workflow to create presentation-style im-
ages of graph networks; approaches like this can be integrated into our
system to improve flexibility and speed up the design process.

Finally, though (as summarized by one case study participant) the
annotation placement algorithms, “seem to work well,” our current re-
sults and feedback for these are colloquial. A lack of formal evaluation
is a current limitation, and we plan to perform a full usability study to
determine optimal usage practices and strategies.

8 CONCLUSIONS

We present Temporal Summary Images, a new approach to making ex-
planatory visualization through the process of interactive exploration.
By leveraging “under the hood” techniques to assist user analysis and
design, we ease the process of creating narrative visualizations for
complex or multidimensional datasets, helping bridge the gap between
data exploration and storytelling.

A TSI is an apt analytics and summarization technique for many
datasets, and we provide examples of its use in both general and sci-
entific domains, along with domain user feedback validating our ap-
proach. Future work will focus on maturing and improving our imple-
mented framework and expanding it to new features and techniques.
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(a) Susceptibility parameter = 1.0.

(b) Susceptibility parameter = 0.5.

Fig. 9: Comparing two EpiSimS runs using annotated storylines (with
data snapshots hidden) gives insight into how varying a susceptibility
parameter between two simulation runs affects disease saturation rates
in a population (where every person has moved into red groups).

In Figure 9, we show two storyline-based TSIs. These were created
to show how using the density placement algorithm can help explain
the visual features in a complex plot. In this case, two simulation out-
puts are compared to each other. Due to space constraints, discussion
of these TSIs can be found in the Appendix.

Based on discussion with EpiSimS team members during the two
conducted sessions of building TSIs and using the system, we received
feedback about many aspects of the TSI workflow, summed below:

For data summarization and presentation: “I like these Temporal
Summary Images. They are easy to get feedback. For flu we might
be interested in one set of lines, but for the mosquito-borne diseases
something else. Having the snapshots up at the top gives you a feel for
the geography, where the disease is going.” “There is a lot of benefit
to this. These are the pictures I want to put in my publications.”

For the annotations workflow: “The annotations help point to what I
care about. I need to know, how many people are infected at this time?
How many are dead?” and “The automatic generation of annotations
is very helpful to quickly see when significant changes occurred.”

For the streamgraph-based TSIs, the team used the top-n ranked
placement algorithm to explore the data. “It’s good to quickly see the
highlights because you can narrow down what you want to further
explore. Really good idea, really useful.” The density placement algo-
rithm was not seen as useful for the streamgraph example (Figure 8),
due to the relatively consistent sloping behavior of the disease. “It’s
too simple for the other [density] placement technique.” Its utility was
noted instead for the storyline figures, which were much more visually
complex. “Nice to see when and what significant changes occurred, to
note when behaviors happened. Easier to explore this way.”

6.1.2 Case Study Two: Millennium Cosmological Simulation

ΛCDM cosmological models such as the Millennium simulation [27,
38] are concerned with the structure and formation of the universe. For
the second case study, we analyze galaxy properties that occur [8]. For
a dataset, we retrieved galaxies attached to the main progenitor branch
nodes of the six largest merger trees. For these galaxies, we view two
important properties: stellar mass (SM) and star formation rate (SFR),
which can be used to show structure and formation behavior trends.
They occur in the context of an important universe-wide “astronomical
POI,” which marks the transition from the matter-dominated era to the
dark energy-dominated era at approximately redshift = 2.

Figure 10 shows a TSI from this study. Line charts show the SM
and SFR over redshift for the six selected merger trees. Two sets of
data snapshots highlight the spatial formation of the Alpha and Delta
merger trees. For both line charts, an additive annotation at redshift

(a) Data snapshots for the Alpha merger tree.

(b) Data snapshots for the Delta merger tree.

(c) Temporal layout and annotations showing stellar mass over redshift.

(d) Temporal layout and annotations showing star formation rate over redshift.

Fig. 10: TSI for showing galaxy properties in a cosmological simula-
tion. Annotations highlight the juxtaposition of the star formation rate
and stellar mass properties by describing two of the merger trees.

= 2 marks the “astronomical POI.” Other annotations highlight salient
extremas of the Alpha and Delta trees (the red and purple lines).

Juxtaposing the SM and SFR line charts highlights how the galaxy
properties exhibit important behavior shifts on opposite sides of the
redshift = 2 annotation. For SM, most growth happens in the dark
energy-dominated era (to the right of redshift = 2). Annotations mark
both the rapid increases and maximums for the Alpha and Delta trees.
The Delta tree shows a particularly interesting rapid slope SM growth
(i.e., slope change) from redshift 0.516 to 0.171. In the SFR chart,
most activity happens to the left of redshift = 2. Annotations on the
Alpha tree highlight that it has a large peak but then drops off for the
rest of the simulation. Delta’s maximum peak also occurs to the left
of redshift = 2, but annotations note multiple local peaks to the right
of it, including one well into the dark-energy dominated era. This
happens at redshift 0.171, which coincides with its time period of rapid
SM increase. This odd behavior could warrant further investigation of
Delta’s raw merger tree data (as noted by study participants).

Feedback and discussion from the cosmology participants was more
mixed than the EpiSimS team. While most liked the TSI framework
and saw its techniques as an improvement to their normal workflow,
one online session participant stated he did not believe the TSI ap-
proach would be useful for his needs. Referring to the observational
annotations, he felt that, “labeling these only clutters the image.”
Other users felt differently though; their comments are curated below:

Automatic annotations were able to give an initial sense of the data:
“The notes are nice for giving a quick order of things like order of
magnitude estimate.” For more subtle or derived POIs, one participant
would switch to querying. “[Then] the manual queries are very useful.
The things I look for depending on the graph change so much it might
be unreasonable for a single system to cover all the criteria.” This was
echoed in two other users, who felt that annotations might have trouble
showing the underlying significance or reasoning of a data POI:

One participant liked having the ability to switch between the two
placement algorithms: “So I like having flexibility for annotation
placements. I think top-ranked annotations especially is useful if there
is a certain event in time you want to mark, and take stock of what the
numbers or features are there.”

In comparing TSIs to their domain tools (mainly R and Python):
“We have trouble in the community coming up with good ways of
showing graphs of things that evolve. This would definitely be use-
ful for displaying data in papers, rather than what we normally use.”
In particular, one advantage TSIs provide is their focus on storytelling:
“I like the idea of being creative in adding snapshots and/or in-figure
annotations. These things can help tell a story depending on what
specifically you’re trying to show or understand.”

7 DISCUSSION

Based on the design process and feedback from case studies, there are
a number of points that can be discussed about the current state of the
TSI framework and our prototype implementation.

7.1 Advantages of the TSI Framework
TSIs are designed to summarize data that have at least two strong di-
mensional axes, where one is always assumed to be temporal. While
this bounds the framework to time-dependent datasets (using the four
currently implemented temporal layout options), there exist a wide
range of both general- and domain-specific datasets that can leverage
our workflow for visualization creation and analysis.

Participants in both case studies noted they felt annotations guided
their analytical perception of the data, and that the “presentation” as-
pect of TSIs was very visually appealing and persuasive. While Lee et
al. have questioned if a single tool should combine both analysis and
design processes [26], based on the set of design requirements for the
TSI framework and feedback from case study participants, we feel it is
justified for this problem space. In this respect, a TSI is more powerful
than simple plotting like R or Python by because it leverages an inter-
active and analytic workflow that recommends snapshots and annota-
tions to the user. With an end result of building visual data stories, it
has advantages over a highly complex, technical, or multi-component
approach designed purely for data analysis.

The intentional use of conventional (and even simple) visual com-
ponents in a TSI is an additional strength. By not introducing novel
visual representations, an author building a TSI for presentation knows
that there is no inherent learning curve for the potential audience, es-
pecially since annotations are text-based, and can focus instead on an-
alyzing and summarizing the data.

7.2 Automatically Scoring Data Attributes
As noted in Section 5.2.1, our current system only supports manual
attribute scoring. However, it is possible to automatically derive at-
tribute scores based on dataset properties. This could be especially
useful when the number of attributes scales to an amount that makes
individual scoring difficult or time-consuming. To automatically score
time series, a distance-based metric such as Euclidean, Minkowski, or
Manhattan distance can measure the similarity between each vector;
there are similar techniques categorical data [9]. Each data attribute
can be scored based on its overall similarity to other attributes in the
dataset. A byproduct of this is that attributes found to be especially
similar can be combined to form combo attributes. Another approach
for automatic scoring is to use a data entropy or magnitude measure
to measure the dataset’s overall change or volatility and rank attributes
based on this. Combo attributes can additionally be formed by com-
bining attributes with similar scores.

7.3 Going Deeper, Wider, and into Snapshot Annotations
We currently are planning to expand our annotation creation process
in three ways beyond the temporal, POI-based tagging currently used
by the system. We can do this by going “deeper,” “wider,” and by
integrating annotations with data snapshots. To go deeper means that
we will include informational metrics or cues that help explain each
created annotation’s significance (the lack of this was noted by a par-
ticipant in the cosmology case study). Going wider means including
more types of POIs that the system recognizes such as statistical or de-
rived metrics. We also plan to allow TSI authors to save manual POI
queries that can later be retrieved to generate custom annotations, like
a stored procedure in SQL.

Finally, there are plans to integrate annotations more closely with
data snapshots. One way to do this is by allowing “data snapshot an-
notations,” where a data snapshot frame can be directly appended to
the temporal layout. This type of annotation can act as a “zoomed-in,”
data-orthogonal view for a specific data attribute on the display.

7.4 Current Design Limitations
While TSIs recommend annotations and data snapshot timesteps, for
most other system interactions there is little user guidance. That is, the
designer must explicitly choose options like which technique to use for
the temporal layout and data snapshots, and what the appropriate color
palette should be.

However, an assumption here is that TSI authors have a familiarity
with the underlying dataset. As such, they can simply choose the same
views they currently use in other plotting tools and leverage the advan-
tages the TSI framework provides. While a recommendation system
like Show Me [29] can be effective in suggesting a new visual projec-
tion to a user, the authors of that paper note that once a user has “set-
tled” on a set of preferred views that usage of this recommendation
feature dramatically drops. Therefore, the lack of recommendations
for design choices like this becomes negligible if the user knows what
general types of views work well for their data.

TSIs also provide no guidance for issues like choosing the optimal
number of data snapshots to show. Obviously, choosing too many will
clutter the display (our implementation shrinks snapshots based on the
number displayed, but there is a minimum size limit). This same clut-
tering can happen if too many annotations are appended to the display.
We note however, that while issues like this can be addressed with dif-
ferent timestep selection and placement algorithms, our system easily
allows a user to interactively modify constraints for these components.
If the view is cluttered, they can change the necessary settings to clear
the display and fix this type of problem.

While aesthetically our current TSI editing options are mostly con-
sidered “up to the task” via case study feedback, we are working on
ways to expand how a user can tweak and style the view. A recent
paper describing the GraphCoiffure system [39] presents a set of tech-
niques for improving user workflow to create presentation-style im-
ages of graph networks; approaches like this can be integrated into our
system to improve flexibility and speed up the design process.

Finally, though (as summarized by one case study participant) the
annotation placement algorithms, “seem to work well,” our current re-
sults and feedback for these are colloquial. A lack of formal evaluation
is a current limitation, and we plan to perform a full usability study to
determine optimal usage practices and strategies.

8 CONCLUSIONS

We present Temporal Summary Images, a new approach to making ex-
planatory visualization through the process of interactive exploration.
By leveraging “under the hood” techniques to assist user analysis and
design, we ease the process of creating narrative visualizations for
complex or multidimensional datasets, helping bridge the gap between
data exploration and storytelling.

A TSI is an apt analytics and summarization technique for many
datasets, and we provide examples of its use in both general and sci-
entific domains, along with domain user feedback validating our ap-
proach. Future work will focus on maturing and improving our imple-
mented framework and expanding it to new features and techniques.
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