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Umbra: A Visual Analysis Approach for Defense
Construction Against Inference Attacks on
Sensitive Information
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Abstract—Collecting and analyzing anonymous personal information is required as a part of data analysis processes, such as medical
diagnosis and restaurant recommendation. Such data should ostensibly be stored so that specific individual information cannot be
disclosed. Unfortunately, inference attacks—integrating background knowledge and intelligent models—hinder classic sanitization
techniques like syntactic anonymity and differential privacy from exhaustively protecting sensitive information. As a solution, we
introduce a three-stage approach empowered within a visual interface, which depicts underlying inference behaviors via a Bayesian
Network and supports a customized defense against inference attacks from unknown adversaries. In particular, our approach visually
explains the process details of the underlying privacy preserving models, allowing users to verify if the results sufficiently satisfy the
requirements of privacy preservation. We demonstrate the effectiveness of our approach through two case studies and expert reviews.

Index Terms—Privacy; inference attack; bayesian network; visual analytics.

1 INTRODUCTION

ORE than a century has passed since the first publica-
M tion on the right to privacy [1]. But in today’s digital
age, the notion of a right to privacy has perhaps never
been more prominent. There are myriad examples where
private information has been disclosed (either inadvertently
or maliciously), leading to personal repercussions including
damaged reputation, fiduciary loss, and threats to personal
safety. In May 2018, the European Union released the Gen-
eral Data Protection Regulation (GDPR) [2], [3]. This law
requires data owners—persons who collect, hold, or process
data—to put in place effective measures that guarantee
privacy preservation for data subjects—persons whose data
is collected and used.

Privacy preservation is necessary across many domains,
including medicine [4] and behavioral research [5]. Unfortu-
nately, achieving effective privacy protection remains a non-
trivial task. A significant challenge is the evolution of adver-
sarial techniques, whereby protection is not achievable sim-
ply by removing sensitive information or attributes from a
data corpus. Inference attacks deduce sensitive information
with high confidence by pairing a base dataset with outside
information: news, third-party reports, additional datasets,
etc. [6]. As an example, if an insurer charges a higher fee to
people who are more prone to illness, an attacker could use
monthly premiums to infer a person’s state of health—high
premiums corresponds to an unhealthy insured.

Inference attacks result in privacy violations when non-
sensitive information is taken as a premise and sensitive
information is derived. To complicate the problem, infer-
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ences can change by varying background knowledge, mak-
ing tracking and planning for such attacks akin to hitting
a moving target. A key takeaway is that privacy cannot
be effectively preserved without considering an attacker’s
potential background knowledge.

When mounting a defense against inference attacks, data
owners must not only ask, “how do I anonymize sensitive
information in my dataset?” but also, “how do I simulate
various inference attacks to verify data subjects are protected?”
To provide trust and control, data owners need to be able
to understand the privacy preservation process—“how can
the process be intuitively explained?”—and customize how it is
applied: “how can the user help direct the application of privacy
preservation models to the dataset?”

To address these issues, we develop a novel visual
analytics approach based around interactively creating and
manipulating Bayesian networks. Bayesian networks [7] are
commonly used to model dependencies among variables,
and have been shown effective for inference analysis across
diverse application domains (e.g. [8], [9]).

Our approach is organized as a three-stage workflow: (1)
inference initialization, (2) data sanitization, and (3) result
verification. In the first stage, inferences that lead to privacy
leaks are identified and visualized. In the second stage,
targeted sanitization operations are customized to obfuscate
data records and attributes, thereby reducing the confidence
of potential adversarial inference attacks. To verify a suffi-
cient level of protection, the third stage supports the interac-
tive building and testing of models to simulate adversarial
attacks on the sanitized data, including ones that make use
of outside datasets. By providing feedback at each stage, we
provide transparency into the privacy preservation process
by showing what data is causing privacy issues, why san-
itization operations are necessary, and how recommended
solutions ensure dataset records are protected. The result
is a powerful, highly customizable, and verifiable defense
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solution against inference attacks.

To evaluate our workflow, we implement it as an interac-
tive software system named Umbra. We present a set of case
studies demonstrating how privacy risks can be defended.
We also interviewed three domain experts in computer
security to whom we demonstrated the system, and they
provided feedback on its strengths and shortcomings.

2 RELATED WORK

This work is premised on the use of inference—drawing
conclusions based on background knowledge and reason-
ing [6]—as a way to facilitate adversarial attacks to ex-
tract private information. To defend against such attacks,
protection schemes modify the dataset in targeted ways.
Such schemes must be tactfully chosen, as sanitization—
obfuscation of data records and attributes—reduces the
dataset’s utility—the ability of data to enable tasks such as
analysis and decision-making [10]. Interactive visualization
can effectively address this tactful scheme application by
enabling human-in-the-loop sensemaking.

2.1 Inference Attacks

With the help of background knowledge such as associa-
tion rules [11], adversaries can potentially access and/or
reasonably assume sensitive information via inference at-
tacks, even when the dataset is encrypted or anonymized.
Although some databases employ precise query protocols to
individually encrypt records, information can be recovered
according to patterns given by range queries [12], [13].

Classic models for privacy preservation, such as syn-
tactic anonymity and differential privacy, are vulnerable
to inference attacks [14]. To construct adequate protection
via anonymization approaches, a data owner must know
both the background knowledge that adversaries will have
access to and what attack behaviors they will employ [15].
Taking adversaries’ background knowledge into considera-
tion, Sun et al. [16] constructed a privacy inference graph
to describe potential privacy disclosures for k-anonymity.
However, this is challenging, especially when predicting at-
tacks from unknown adversaries, as they can access desired
information simply by tracing paths between nodes in the
graph [16]. As for differential privacy models, their indepen-
dence assumption also provides a vulnerability for inference
attacks [17], [18], since correlations can be observed in a
majority of datasets. To break such limit, a feasible approach
is applying Bayesian models [19].

In the past decade, Bayesian networks—which extract
probabilistic relationships among variables as a graph
model [7]—have emerged as a technique for inference iden-
tification. To adapt this idea to application scenarios, re-
searchers tailor the graph model for particular perspectives.
For example, Zhang and Song [20] proposed a graph-based
posterior inference model in accordance with likelihood
weighting. In considering various distinct possibilities in
event sequences, their model includes nodes, correspond-
ing to the resource information occupied by attackers, and
edges, indicating underlying attacks. To reduce the learning
cost of Bayesian Networks, Timmer et al. [21] designed an
intuitive representation by extracting inference rules and re-
lated strengths. Based on inferential strength, the algorithms
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presented by Timmer et al. can detect the undercutters
against the inferences [21]]. To our knowledge, our approach
is one of the first to adopt Bayesian networks in visual
analytics workflow for privacy preservation.

2.2 Defense against Inference Attacks

As one approach to personal identity privacy, Li et al. [22]
proposed a flexible algorithm that combines two syntactic
anonymity models, k-anonymity and [-diversity, by em-
ploying k as an individual number and [ as diversity level.
Unfortunately, both models provide insufficient protection
against attacks that speculate on attribute distributions, e.g.
skewness attacks [23]. Minimax filter [24] is a learning-
based approach that uses independent assumptions be-
tween training data and test data. This method provides
task-dependent protection by dimensionality reduction of
raw features and can be extended to include noise by
leveraging differential privacy approaches [24].

Utility is an important consideration in the sanitization
process, because sharing sanitized data becomes pointless
if all useful information is removed. Salamatian et al. [25]
applied probabilistic privacy mapping to randomly perturb
data values; they consider utility as one constraint in a
convex optimization problem. Similarly, Chen et al. [26]
balance privacy and utility as a knapsack problem using
data values as weighted items. The item weight is quan-
tified as the risk of privacy disclosure—calculated by a
Naive Bayes model—and item value is based on uniqueness
and commonness. Given privacy-dependent attributes and
utility-dependent attributes, Cai et al. [27] modify shared
attributes by constructing a generic attribute hierarchy and
removing the remaining privacy-dependent attributes.

However, the aforementioned strategies ignore the ques-
tion of how fo simulate attacks. Without specific simulation
capabilities that account for the background knowledge
of potential adversaries, they have limited adaptability.
There are also other considerations, including the ability
to enable task-oriented utility settings and designing for
non-professional users (i.e., the question about intuitively
explaining the process). We explicitly consider these issues in
our design requirements and workflow (see Secs. [3|and [4).

2.3 Visualization for Privacy Preservation

Privacy preservation must be considered when using sensi-
tive data in any manner, including visual analysis. Unfortu-
nately, most prior work in this area only leverage classical
models (see Sec. 2.1), meaning that it cannot provide guar-
anteed defend against inference attacks.

For example, k-anonymity is used to create visual clus-
tering for parallel coordinates [28]. The identities of indi-
vidual data points (data records) are unrecognizable due
to the uncertainty caused by visual perception. Enabling
custom parameters for visual clustering, Dasgupta et al. [29]
extended their privacy preserving design to other charts
types such as scatter plots. Subsequently, specific visual
designs that can preserve privacy for various data types
have been proposed, including event sequences [30]], social
networks [31], and trajectory data [32]. To quantify the
ability of visualization techniques at obfuscating privacy
leaks, a probabilistic model [33] is proposed to explain the
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effects of attackers” background knowledge and the uncer-
tainty in cluster-based charts. Empirical studies are also
implemented to assess other visual expressions, including
for alluvial diagrams [30], node-link graphs [34], and geo-
based trajectories [35].

Interactive visualization has also been used to augment
the privacy preservation process. ODD Visualizer [36] uses
matrices to explain the re-identification risks that are caused
by grouping attributes. The PER-Tree [37] measures poten-
tial privacy exposure risks via multiple syntactic anonymity
models, allowing users to evaluate and remove the source of
the risk. For social networks, GraphProtector [38] provides
a transparent and intuitive privacy preserving pipeline by
recommending sanitization solutions and providing a his-
torical view of previous dataset updates, while allowing
custom configurations that account for privacy and utility
trade-offs. While these systems are effective in resisting
subsets of attacks, as compared to the workflow introduced
in this paper, none of them provides sufficient protection if
inference attacks are employed.

3 DOMAIN AND TASK ANALYSIS

Our goal is to provide both guaranteed protection against
inference attacks while simultaneously giving visibility and
human-in-the-loop control into the backend data sanitiza-
tion methods being used. As a domain abstraction, our tar-
get users are data owners who want to ensure that collected
information is protected. As our approach is based around
Bayesian modeling of inferences to identify and resolve
privacy leaks, such users must also have an understanding
of privacy protection and Bayesian network to reason the
quantified risks [39], [40].

To motivate the specific tasks that our system should
support, we conducted a task abstraction by discussing the
topic of interactively ensuring privacy with an established
researcher in computer security (a professor with 20+ years
experience). Interactive dataset sanitization is not common
in privacy preservation, so this discussion focused on iden-
tifying areas where standard automated approaches can
be improved by adding interactivity and user control. For
example, automated approaches are primarily black boxes,
providing little transparency or explainability both to data
owners and data subjects. Automated approaches provide
little customization of defenses or details on demand about
dataset specifics, which limits the ability of data owners
to defend against distinct or novel attack behaviors. Based
on this discussion, we derived seven design requirements
(DRs) to support interactive and customized dataset protec-
tion against inference attacks.

DR1: Extract underlying inferences. Because future at-
tack behaviors are unknown, any combination of underly-
ing inferences can be considered as background knowledge
that an adversary might leverage. To defend attacks, depen-
dency relationships between all attribute value pairs must
be understood [21]. Therefore, underlying inferences should be
extracted to facilitate subsequent summary and analysis.

DR2: Allow custom inferences. Removing all potential
inferences that relate to sensitive information will ostensi-
bly provide comprehensive protection, but at the cost of
severely reducing the utility of the dataset. Depending on
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the context, a data owner might allow some inferences to
remain, even if they technically lead to exposure risk (e.g.,
the inference is beyond an adversary’s knowledge). New
inferences may also be created by introducing additional
datasets [41] or outside information [42]. To ensure a full
understanding of adversarial background knowledge, data owners
need to specify new inferences and modify existing ones.

DR3: Seek defenses against identified inference at-
tacks. Privacy leaks should be identifiable and resolvable
according to the inferences extracted from the dataset (DR1)
and those customized by users (DR2). To ensure compre-
hensive defense against attacks (which can be quite complex),
computational-based approaches are necessary to guarantee the
results of privacy preservation processes.

DR4: Recommend sanitization solutions. Individual
data records may be sanitized in multiple ways. For exam-
ple, “a person whose birthday is July 1st” might be applied
to one person (one data record) in a dataset, while vaguer
descriptions (“a person born in July,” “a person born on the 1st”)
might be applied to dozens. Removing either the month
or day information preserves that person’s anonymity, but
which option is best? Automatic evaluation approaches, like
using entropy-based indicators, can mislead in a majority of
cases. For example, processed datasets with high indicator
values may benefit little from practical applications such as
machine learning. To assist decision-making and enable human-
in-the-loop sanitization, potential sanitization actions should be
automatically evaluated, compared, and ranked as recommenda-
tions, while still allowing users to opt for a desired solution.

DR5: Simulate outside attacks. To comprehensively ver-
ify privacy preserving levels, a common practice in related
research [43] is to simulate attacks. Privacy exposure risks
can be identified from the attack results. For the sanitized
dataset, new attack models can be built and applied; accuracy met-
rics can judge if the privacy preservation levels remain acceptable.

DR6: Show data details. Due to a lack of data de-
scriptions and result expressions, automatic methods face
difficulties in parameter settings, model selection, result
verification, etc. Besides, a data owner needs to verify a
dataset’s overall status before publishing it, potentially in-
cluding low-level analysis of specific data subjects. Therefore,
details about individual records and the entire datasets should be
reviewable in the sanitzation process to see how they have been
modified and sanitized.

DR7: Explain the sanitization process. Mechanism ex-
planation can help data owners judge if the sanitization
model is reliable and trustworthy [44]. Therefore, the entire
sanitization process supported by automatic models (DR3) should
be explained in an intuitive, user-friendly way [37], [38].

4 MODELING AND DEFENDING INFERENCES

To support design requirements DR1-DR7, we adopt a
three-stage workflow. Before describing the workflow in
detail in Sec. [5, we first introduce several necessary back-
ground concepts and algorithms.

4.1 An lllustrative Dataset

To provide context and real-world applicability when de-
scribing our approach throughout Sections #He| we use a
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dataset on post-student development published by McVicar
and Anyadike-Dane [45]. This dataset is about the so-
cial statuses of persons in Northern Ireland. McVicar
and Anyadike-Dane concluded that specific background
characteristics—coming from disadvantaged areas, having
an unemployed father, etc.—correlated to experiencing fail-
ure after graduation from educational institutions [45]. An
adversary could therefore infer that an individual experi-
enced failure if some or all background conditions were met,
and odds are high this speculation would be correct.

Table [1| shows the attribute properties of this dataset.
It contains 8 attributes about 712 individuals. For our
purposes, the employment status (the employ attribute) is
considered as sensitive.

TABLE 1
The post-student development dataset contains information about the
social and economic status of 712 persons in Northern Ireland. The
highlighted attribute employ is considered sensitive.

Attribute | Data Type | Description

gender Categorical | The individual’s gender.

residence | Categorical | Where the individual lives.

employ Numerical Total number of months employed over the
prior 6 years.

grade Categorical | Did the individual have five or more academic
qualifications at grades A-C? (binary)

school Categorical | The type of the individual’s school.

cat Categorical | Is the individual a Catholic?

fue Categorical | Is the individual’s father unemployed?

fmp Categorical | Is the individual’s father employed in a man-
agerial position?

4.2 Key Terms for Bayesian-based Inference

There are a variety of approaches to inferring information
(e.g., [25], [46]), among which, Bayesian-based approaches
are representative and widely-applied [21], [26], [47]. Before
describing the details, we define several key terms.

In a dataset, inferences are conditional probabilities
among states, which are colloquial characteristics defined
by single attribute values. As an example, a person (a single
data point or record) in the post-student dataset could
belong to a state called “success,” based on meeting some
value threshold within the employ attribute, and “failure”
if not. This threshold, called a split point, divides the
numerical range of the employ attribute into categorical
bins, one for each state. If the split point was set to 12,
then the states Ssyccess (i-e., employ: (12~72]) and Saizure
(i.e. employ: [0~12]) would respectively denote success and
failure. Alternatively, categorical attributes provide intrinsic
state definitions: e.g., “lives in the north” can be defined by
specific values for the residence attribute.

In the Umbra system (described in Sec. @), we automati-
cally identify split points for numerical attributes by parsing
attribute distributions and finding sharp declines. If no such
a decline is present, the medians are selected to equally
divide the records. This prevents excessively unbalanced
sample sizes, which hinders accurate inference generation.

States can be either sensitive or non-sensitive. Sensitive
states are those that a data owner wishes to keep private,
such as Ssuccess and Syqiture. Other states, including res-
idence (SNorthern/ SSouthe'r‘n/ etc.) and Qendef (SFemaler
Snale), are considered non-sensitive, and their information

4

may be publicly known or published. We refer to a group
as a set of records having the same set of non-sensitive
states. To preserve privacy of the records in a group that
has been identified as “at-risk” for exposure, we identify a
set of candidate states for removal from the inference graph
(see Sec.[4). This solution (the set of states to be removed to
ensure the group’s privacy) is regarded as a scheme. When
a scheme is applied, a percentage of state occurrences—
records which satisfy a certain collection of states defined
by a combination of one or more attributes —are removed,
meaning that the state-related attribute values of the records
are “blanked out” or marked as “unknown.”

4.3 Extracting Underlying Inferences as a Graph

The first design requirement (DR1) is to extract the underly-
ing inferences in a dataset. The first step towards inference
extraction is quantifying the probabilities of state occur-
rences. We first count state occurrences. Then, we calculate
conditional probabilities as:

PI‘(S()|81, 7Sn) = PI‘(So, S17 ...7Sn)/PI‘(S17 7Sn) (1)

where S;(i = 0, ..., n) refers to different states.

An adversary may be aware of correlations between
sensitive and non-sensitive states, thereby inferring sensi-
tive states based on public information about non-sensitive
states. Instead of Naive Bayesian model [26], we use
Bayesian network to learn state-to-state correlations and
detect the underlying inferences thoroughly. Because indi-
vidual records can only be binned into one state defined by
an attribute (e.g., a student is either “pass” or “fail,” but
cannot be both), we do not consider correlations between
states defined by the same attributes.

To describe these correlations, inferences can be visu-
alized as a network graph (see Fig. 2[c) and Fig. [10] for
examples of inference graphs). States are represented as
nodes and directed edges weight the “effect amount” from
the source state to the target. We quantify these effects as
|Pr(Starget|Ssource) - Pr(Starget)|/ where Starget refers to
the target state and Sorce refers to the source state. If two
nodes are connected through a path, there is an indirect
correlation between the two states.

The difference between the conditional probability given
a source state and the probability of a target state indicates
the ability of source states to infer a target state. To allow
for custom inferences (DR2), new edges can be added to the
inference graph. Note that inaccurate inference simulation
may lead to invalid privacy preservation. Thus, the dataset
for inference graph construction and subsequent editing
operations must be reliable.

4.4 Constructing Defenses Against Inference Attacks

To enable comprehensive defenses (DR3), we first learn
the risks posed by underlying inferences to potential (i.e.
simulated) attacks. The conditional probabilities of a sen-
sitive state, given any set of non-sensitive states, are as-
sumed known by adversaries. That is, an adversary may
know the exact values of Pr(Ssyccess|SFemales SSouthern),
Pr(Ssuccess|Smale, SNorthern ), etc. Such an inference is used
to assert if Ssyccess 1S true, violating privacy. Assume
that the conditional probability using residence is much
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higher than gender. If the published version of the dataset
removes the residence information (so it is not known
where the students come from), an adversary can only em-
ploy the conditional probabilities Pr(Ssyccess|SFemate) and
Pr(Ssuccess|Saaie), which have much lower confidence.

An extreme solution for privacy preservation is to re-
move all non-sensitive states from the dataset (this is
mentioned in (DR2). By removing conditional informa-
tion, an adversary cannot use conditional probabilities as
a basis for inference attacks, and can only rely on less
confident probabilities (i.e. Pr(Ssyccess) for all groups). If
Pr(Ssuccess|SFemate) is close to Pr(Ssyccess), the gender
information cannot be used for inference attacks and can
therefore be included in the published dataset, which will
indicate a higher overall utility. We describe a group of
records as “privacy preserved” and ready to be shared when
the conditional probability of each sensitive state lies within
a “no-risk” range. The no-risk range is Pr(Ssensitive) £ 0,
where Pr(Ssensitive) is calculated without any hint from
public information, and J is a user-defined parameter rep-
resenting a privacy exposure risk limit. Such non-sensitive
states may be safely published as they provide negligible
help in inference attacks.

To assess the impact of a potential inference attack, we
first verify if each sensitive group lies within the no-risk
range. To resolve groups that are at-risk, one or more nodes
in the inference graph must be deleted along paths to the
sensitive state. In this way, inference attacks are defended
by removing correlated states.

To find a candidate set of states for removal, we first look
at adjacent neighbor nodes to the sensitive states, starting
with the node with the highest confidence in the inference
(has the largest edge weight in the inference graph). We it-
eratively delete these states until the at-risk group’s privacy
is preserved, record the deleted states as a scheme, and then
restart and attempt other state combinations for deletion. If
removing all states in a state set C's fixes a privacy leak,
we will not test any set that includes Cg, because there is
no need to remove extra information (causing unnecessary
utility loss). The set of identified schemes are candidate
solutions for transforming the exposed group into a no-risk
range. By exhaustively traversing all state combinations,
all applicable schemes can be identified. Unfortunately, the
time complexity of this operation is O(ng"#), where ny
and ng are, respectively, the number of attributes and the
number of states defined by an attribute. (Keep in mind that
multiple states from the same attribute cannot be in the same
set, since a record can only have 1 state for each attribute.)
We discuss system scalability in Sec.

4.5 Recommending Solution Schemes

Multiple schemes might be applicable for a single identified
privacy leak, therefore recommending a solution supports
decision-making for users (DR4). For this process, it is
necessary to know the impact that each scheme has on the
resultant dataset. The hope is that sanitizing a dataset not
only protects it from inference attacks, but it does so in a
way that maintains high overall utility.

One consideration is that certain states may be more
important to post hoc tasks, and their removal as part
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Fig. 1. The three-stage workflow for constructing defenses against in-
ference attacks. Items in the top row allow users to seek appropriate
sanitization based on dataset characteristics; the second and third rows
allow users to review and refine the automatic models. ltalicized text
indicates actions that are automated by Umbra.

of a scheme might affect resultant attribute distributions.
These states should be preserved as much as possible. As an
example, assume a state S; has 2 occurrences and state .Sy
has 1000. Removing one occurrence has a negligible impact
on Sy, but removes half the samples of 5.

We quantify the specific utility value of a non-sensitive
state in two ways. Suppose that S is a non-sensitive state
that happens with a probability of Pr(S). By calculating
entropy based on information theory, S’s utility value is:

up = —vagr % log(Pr(S)) )

where v, (0 < vay,r < 1) is a user-defined utility value
of Attr, the attribute used to define S. However, many data
owners are non-professional users (who may not be familiar
with logarithms). Thus we provide a second utility metric
(which is the default choice in Umbra):

up = vapr X (1 —Pr(9)) (3)

Equations (2) and (3) compute states with fewer samples as
having higher utility levels. We use this utility value to sort
applicable schemes, ranking solutions by decreasing order
of total utility loss (the sum of utility values of the states to
be removed). The scheme with the lowest total utility loss
for a group is the recommended choice.

5 WORKFLOW

Using the techniques described in Sec. [} privacy preser-
vation is achieved through a three-stage workflow. Fig.
shows this workflow, and labels the specific operations
that support the design requirements outlined in Sec.
In this section, we briefly describe the workflow at a high
level, according to operations shown in Figs. [[fa)(i). Sec. [f]
describes how each stage is implemented within Umbra.
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5.1 Inference Initialization (Stage 1)

The Inference Initialization Stage is for defining states and
constructing inferences. A dataset is loaded and its at-
tributes are placed into two disjoint sets: those that can
be shared and those considered sensitive. If additional
datasets are desired (to simulate adversarial background
knowledge), they can also be loaded.

Fig. a): Based on the loaded data, users create states
and learn about their correlations. State definitions may be
customized according to user preferences (e.g., age > 18
may signify a record is an “adult,” or alternatively “allowed
to rent a vehicle”). Users can create, edit, and delete states by
binning numerical ranges, adjusting split points, and merg-
ing categorical values, and can review attribute distributions
and adjust the utility values (Equations 2 and 3) for non-
sensitive attributes.

Fig. [I{b): Based on the defined set of states, underlying
inferences are extracted (DR1) and the base inference graph
is constructed. Custom inferences (DR2) are supported by
manually editing the conditional probabilities.

Fig. c): To understand exposure risks (DR4), inferences
can be further analyzed. Because privacy exposure can be
caused by a combination of multiple states (see Sec. [£.4),
the conditional probabilities given in a state set can be
compared to the probability of sensitive states.

5.2 Data Sanitization (Stage 2)

Based on the constructed inference graph, the Data Saniti-
zation Stage recommends sanitization operations (schemes)
on groups identified as being at-risk for exposure.

Fig.[I{e): For groups that are at-risk, applicable schemes
are identified (DR3) and sorted (DR5) based on overall
utility loss. When multiple schemes are available, the rec-
ommended solution can be compared to alternate schemes
by reviewing the differences in effect on dataset utility.

Fig. [[[f): To understand how a scheme sanitizes an
exposed group (DR4), the application of the scheme on the
inference graph is previewed. Blocked by the removal of
states (nodes), related inferences will either be invalidated
or have much lower confidence.

Fig. [1[{d): To understand how a group is affected by a
scheme, specific states that will be deleted can be inspected
in detail (DR6). If a scheme’s outcome is undesirable (for
example, deleting the group will remove incidental states
with high semantic values), an alternate solution may be
chosen. Custom schemes are also allowed, wherein users
specify a subset of the records within a group as the ones to
be modified, because the selected records may have charac-
teristics that are important for post hoc analysis needs.

5.3 Result Verification (Stage 3)

After the dataset has been sanitized by the application of
schemes, the Result Verification Stage allows users to re-
view, tweak, and validate the privacy preservation process.

Fig. [I(g): Because the application of a scheme removes
one or more states, the distribution of attribute values in
the resultant dataset may become skewed. Such a condi-
tion may provide hints to compute and complete missing
values. Although we use distribution characteristics as the

6

basis for sorting the recommended solutions, “damaged”
distributions can still occur due to strong correlations be-
tween states. To mitigate such situations, post-scheme at-
tribute distributions can be checked (DR7) and “trimmed”
to proportionally align with those in the original dataset.
When trim is performed, we identify “excess” parts of the
distribution, and randomly remove occurrences from these
parts until the distribution matches the trim.

Fig. [[(h): To verify that the processed dataset has suffi-
cient defenses (DR8), inference attacks can be simulated by
interactively building and running classification models.

Fig.[I[i): The results of classification models are reported
to provide insight into both the original and the sanitized
dataset’s sensitivity (true positive rate) and specificity (true
negative rate). Users may compare the two dataset reports to
assess the success of the privacy preservation process (DR4).

6 THE UMBRA SYSTEM

Based on the workflow described in Sec. 5} we have built a
visual analytics system, called Umbra. Each workflow stage
is implemented as a dual-column interface, shown in Fig.
Each stage’s interface is similarly structured: relevant infor-
mation about the dataset is shown in a left pane (Figs. b),
(d), and (f)), while model-related views, which explain a
model’s state or show its results, are shown in a right pane

(Figs.[2(c), (e), and (g)).

6.1 Interface for Inference Initialization Stage

The interface for the Inference Initialization Stage contains
the State Initialization View in the left pane (Fig. )) and
the Inference Simulation View in the right pane (Fig. [2(c)).

State Initialization View (Fig.[2(b)). A set of distribution
charts visualizes the value histograms for each attribute.
Numerical attributes and categorical attributes are shown
as area charts and bar charts, respectively. Sensitive at-
tributes (i.e., the employ attribute) are colored red, while
non-sensitive attributes are colored blue.

To create and edit states for numerical attributes, clicking
and dragging along the horizontal axis adjusts split points.
In the figure, split points for employ have been defined as
12 and 48, signifying a record will fall into 1 of 3 states.

For categorical attributes, individual states are shown as
vertical bars. For each chart of a non-sensitive attribute,
a corresponding input box (labeled “Utility”) shows the
parameter of the attribute’s utility. with a default value
of 1. Because sensitive attributes must be removed for
anonymization, they do not require utility values. For each
non-sensitive state, opacity is mapped to the utility value
(see Equations 2 and 3).

Inference Simulation View (Fig. [2lc)). As states are
defined in the State Initialization View, the corresponding
inference graph is updated. Each node represents one state
and has the same hue and opacity encodings as in the
distribution charts. Edges between nodes show inferences
based on the source state to the target state. Its opacity
encodes its magnitude and its line style encodes the effect
sign (solid for positive and dashed for negative). A slider
(labeled “Correlation Filter”) filters correlations associated
with the magnitude.
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Fig. 2. An integrated layout of our system navigated by (a) a three-stage workflow. Each stage has a dual-column interface, with a data description
view ((b), (d), and (f) ) on the left, and a model exploration view ((c), (e), and (g)) on the right. The interface of the Inference Initialization Stage
consists of a State Initialization View (b) that displays attribute distributions with utility-mapping opacity for event definition, and an Inference
Initialization View (c) that depicts all underlying inferences among events by an inference graph. The second interface for the Data Sanitization
Stage provides a selected group of records in a Data Table View (d), together with a list of candidate solutions, and an overview summarizing
changes of all solutions in a Solution Recommendation View (e). The interface for the Result Verification Stage supports users in verifying the
distributions in the Data Trim View (f), and evaluating the processed data’s resistance to other attacks in Attack Simulation View (g).

States associated with the same attribute are bounded by
grey convex hulls. State nodes can also be merged into ag-
gregated nodes (the “Merge by attributes” toggle), meaning
that graph nodes will now show attributes instead of states.
Fig. Eka) shows the merged inference graph of Fig. EKC). In
this case, the node opacity encodes the attribute’s utility
value vy, Clicking an edge in the merged graph unfolds
an edge detail view (Fig. Bb)), which shows the specific
correlations between source and target states.

To see details about a specific inference, right-clicking
a state node shows its conditional probabilities (see the
tables in Fig. [10). Probabilities can be manually edited (or
deleted) to enable custom inferences between states. In the
main graph, new inferences can be created by dragging
from one state node to another and then inputting both
probabilities and conditional probabilities. To keep from
overwhelming users, we restrict editing of a target state to
only when it is given by one source state. If complex multi-
state modifications are necessary, it is simpler to reconstruct
the inference graph by loading additional datasets.

To analyze inferences based on multiple states, clicking
a sensitive state node will pop up its state set chart (Fig. [).
The state set chart visualizes the conditional probabilities
of all possible state combinations on the selected sensitive
state. Each brown circle represents a set of non-sensitive
states in the dataset. Note that a set can have only one
state per attribute. A circle’s horizontal position represents
the number of its contained states (Fig. El For instance, the

ofue
@gender
- “
efmp ¢ ggtade
\ \ Show details
\ By clicking
chool—y /e‘fpploy
\d
residence
[0~12](12~48](48~72]
at employ

(a) A merged inference graph (b) Edge details

Fig. 3. (a) The inference graph from Fig.[2|c) shown with merged states.
A strong correlation can be identified between grade and employ. (b)
Edge details illustrating inferences between each state pair defined by
the attributes; employ: [0~12] and employ: (48~72] can be inferred with
high confidence based on grade.

state number in Fig. [ varies from 1 to 7, because there are
7 non-sensitive attributes). Meanwhile, its vertical position
indicates the conditional probability of the sensitive state
given its state set. The horizontal green band shows the
calculated no-risk range (see Sec.[#.4). Sets whose probabil-
ities lie within the no-risk range are omitted from the chart,
as users primarily care only about states that invoke risk;
this means that the vertical space can be compressed. To
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Fig. 4. The state set chart that shows the probabilities of the sensitive
state employ: [0~12]. A state set out of the no-risk zone is checked.
Related states are highlighted in the inference simulation view.

interpret this chart, the greater the distance of a circle from
the no-risk range, the greater the risk caused by its state
set. Hovering over a circle highlights the states that belong
to it in the inference graph, and hovering on a state in the
inference graph conversely highlights circles that include
that state.

6.2 Interface for Data Sanitization Stage

Clicking on the navigator bar (Fig.[2(a)) trigger the transition
from the Inference Initialization Stage to the Data Sanitiza-
tion Stage. The second stage is composed of the left-pane
Data Table View and right-pane Solution Recommendation
View (Figs. d) and (e), respectively).

Data Table View (Fig. 2(d)). Similar to the State Ini-
tialization View (Fig. Ekb)), a bar chart is shown for each
non-sensitive attribute; individual bars represent states and
color opacity indicates each state’s utility value. The height
of a bar encodes the percentage of records in the state that
remain after the application of currently selected schemes.
A value of 100% indicates that no occurrences of that state
will be removed. The width of a bar indicates the number
of records belonging to that state—a wider bar indicates the
state contains a higher percentage of records.

Below the bar charts, a table displays all groups (in
Fig.2[d), we only show two rows due to space limitations).
If a group’s index cell (the first column) is colored red, the
records within the group are considered at-risk for exposure,
demanding the application of schemes to defend against
attacks. Rows are ordered by the group exposure risk and
size. Columns show the group’s state values.

By reviewing the bar charts, users can decide if a state
will be overly modified by the application of schemes (i.e.,
too high a percentage of its occurrences will be removed).
Clicking a state’s bar will sort the table to show related
groups to the top. A striped pattern appeared in table cells
indicates specific states that will be modified by currently
selected schemes. To interact with the records in a group,
clicking the group unfolds it to show its contained records
(see Fig. Bfa), where group G26 contains 3 records). Users
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Fig. 5. Selected records and related solutions. (a) Group G26 is at
risk, due to its red color. It contains three records, shown as rows
beneath the main group row. Due to space, record values are blanked
but can be shown by hovering on a cell. (b) The top-2 feasible solutions,
shown as simplified inference graphs, demonstrate how inferences will
be eliminated to protect the privacy of G26. The first solution will remove
the “grade: yes” state and the second will remove “school: gramma”
state. The sanitization results of the two solutions are summarized in
the data table view in (a).
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Fig. 6. The simplified inference graph for G26 in the Solution Rec-
ommendation View, with the toggle set to show states that will be
“preserved.” Scheme S1 preserves all states except “gramma,” and S2
all states except “grade: yes.”

can brush and select records in the group to customize dif-
ferent schemes. Users can additionally review other schemes
by clicking the group’s index cell—black triangles denote
that alternate solutions exist.

Solution Recommendation View (Fig. [2(e)). For the
records selected in Data Table View, the top-recommended
schemes are shown as simplified inference graphs (only
states that contain records are shown). Fig. [5(b) shows an
example of two recommended schemes. States that will be
removed are labeled with question marks. (We choose this
punctuation to denote uncertainty invoked by the removal
of information.) The number of records that will be modi-
fied by the solution (i.e., by having attribute values set to
“unknown”) is shown in the top-left corner. In Fig. [5{b), 1
and 2 records would be modified by each respective scheme.
Recommended schemes are listed in the order of utility loss.
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In the simplified inference graphs, two contrasting en-
codings are provided to demonstrate the impact of schemes
(via a “Remove/Preserve” toggle). Triangles appended to
nodes that indicate states that will either be preserved (blue
triangles, see Fig. [6) or removed (grey triangles, Fig. 2(e)).
Triangles are labeled with their respective schemes. In
Fig. Ple), the two grey triangles indicate that scheme S1
will remove the “grade: yes” state, and scheme S2 will
remove the “gramma” (graduated from grammar school)
state. Fig. [f|shows the same information from the “preserve”
perspective.

6.3

Navigating to the Results Verification Stage applies the
selected schemes to the dataset (thus removing state oc-
currences). This last stage contains the Data Trim View
(Fig.2(f)) and Attack Simulation View (Fig. [(g)).

Attack Simulation View (Fig. 2(g)). To verify that the
applied schemes are a sufficient defense against inference
attacks, users may simulate such attacks by interactively
training and running binary classification models. The suc-
cess of an attack on the sanitized data can be compared to
the success of the attack on the original dataset.

Umbra supports several models for simulating inference
attacks, including k-nearest neighbor (KNN), Bayesian net-
work, SVM, random forest, and decision tree, with default
parameters based on WEKA [48]. We report results in two
ways: (1) bar charts provide visual summaries of classifi-
cation results, and (2) text descriptions show detailed sta-
tistical information, including sensitivity and specificity. As
an example, in Fig. 2[g), a KNN attack has been simulated,
and the number of identified true positives (i.e. records with
exposed privacy) is reduced from 136 to 59.

Data Trim View (Fig. Pff)). To adjust the post-scheme
distribution of attribute values, users may also trim at-
tribute distributions. For each non-sensitive state, the orig-
inal record count is visualized as a dark blue outline, the
current (processed) count is shown as a light blue solid area,
and the part that is recommended to be trimmed is shaded.
Trimming removes the shaded area from the occurrences,
changing the attribute’s distributions to be similar to what
it was in the original dataset. After trimming, the current
distributions will change, and the distribution charts will
be covered by a grey rectangle. In Fig. [(f), the residence
attribute has been trimmed and greyed; the grade attribute
recommends removing occurrences from the “no” state to
match the original distribution.

Interface for Result Verification Stage

7 CASE STUDIES

To demonstrate how Umbra can detect and defend against
inference attacks, we present a set of case studies on two
separate datasets (see Tables [2] and [3). Due to space con-
straints, screenshots for certain system interactions are omit-
ted. Please watch the supplemental videos for more details.

7.1 Students’ Academic Performance

The academic performance dataset [49] contains back-
ground and academic information about students extracted
from a learning management system (LMS). Suppose that,

TABLE 2
The academic performance dataset contains information about the
background and academic behavior of 480 students. The highlighted
class attribute is considered sensitive.

Attribute | Data Type | Description

placeOfBirth | Categorical | Student’s birth country.

grade Categorical | Current grade level.

discuss Numerical Number of participations in discussion.

raiseHand Numerical Number of times the student raises a hand.

visitRes Numerical Number of visits to online course content.

absence Categorical | Number of absences.

class Categorical | Academic performance rating.

satisfy Categorical | Satisfaction level of the student’s parents with
the school.

relation Categorical | Parent responsible for student.

grade

raiseHand

. discuss

visitRes

. felation

satisfy
. placeofBirth

Fig. 7. The merged inference graph of the academic performance
dataset shows that the absence, visitRes, and raiseHand attributes are
neighbours of the class. Further analysis shows that two specific states
(“absence: Above-7,” and “visitRes: [0~49]’) invoke the highest risk for
exposure.

the LMS’s data owner wants to provide this data to a
similar organization to analyze how certain patterns—e.g.
encouraging students to take part in more discussions—
helps to improve parental satisfaction. Before sharing, he
needs to sanitize the dataset to protect students from having
their academic performance exposed. This is represented by
the class attribute, which shows academic performance and
is considered sensitive.

To start, he loads the dataset in Umbra. Due to the
low number of records in the dataset (only 80 students),
inference confidences are already reduced. He therefore
increases the privacy exposure limit from 0.1 (the default)
to 0.3. In the inference initialization stage, he uses the State
Initialization View to create split points for the numerical
attributes based on their value distributions, and creates an
“other” state for placeOfBirth data values that have less than
25 occurrences.

In the Inference Simulation View, the merged inference
graph (shown in Fig. [7) shows that three attributes have a
strong effect on the sensitive class attribute. After observing
correlations between the attributes, he updates utility values
for the attributes based on the length of the path from
each attribute to satisfy. Longer paths indicate more indirect
correlations, and thus these attributes contribute less to
analyses on causal factors of parental satisfaction degrees.

He next loads the state set chart for the “class: L” state (L
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Fig. 8. The state set chart of sensitive state class: L in the academic
performance dataset.

denoting low or failing academic performance), see Fig.
There are two single-state sets that are outside the green no-
risk band: “absence: Above-7” (absent more than 7 times)
and “visitRes: [0~49]” (visiting the course content less than
50 times). Surprisingly, when he hovers over these circles
in the chart, most sets in the state set chart are highlighted,
meaning that most sets that are at-risk contain at least one
of these two states. Moreover, the two-state set with the
highest exposure risk (0.81) is composed of these two states.
From this, he deduces that the primary sources of privacy
exposure come from states associated with the absence:
Above-7 and visitRes: [0~49] attributes. Since they have
direct, high correlations with the sensitive class attribute, an
adversary could use them to infer values for that attribute.

Navigating to the Data Sanitization Stage, Umbra recom-
mends removing about half the values of the two identified
absence and visitRes states. States belonging to attributes
that are “far away” in the inference graph (Fig. [7), such
as satisfy and grade, have little correlation on the class
attribute; hence, there is little need to modify them during
defense construction.

In the Result Verification Stage, he applies a random
forest model as a simulated attack—the results are shown
in Fig. Pfa). In the original dataset, 119 records are exposed,
but the processed data only shows that 58 records could be
identified. To further decrease the amount of true positives,
he uses data trimming to remove a small amount of occur-
rences (examples for the raiseHand and discuss attributes
are shown in Fig. Pfb). This slightly reduces the dataset’s
sensitivity (original: 0.94, processed: 0.46, trimmed dataset:
0.40), and further reduces the number of true positives from
the simulated attack model to 51 instances.

7.2 Home Insurance

The home insurance dataset [50] is an example of a
Customers Relationship Management (CRM), which shows
policy information for a home insurance company from
2007-2012. It stores information about customer homes and
associated homeowner policies. To represent the dataset, we
sampled 10, 000 records from the full dataset (see Table [3]
for a list of attributes used). As the CRM data owner, he is

10

State: class: L #Occurrences 127

#Positives 130
Original dataset
#True positives 19

#Positives 87
Processed dataset
#True positives 58

#Positives 74
Trimmed dataset »
#True positives 51
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Fig. 9. Verifying the results of privacy preservation on the academic
performance dataset. (a) The results of attack simulation implemented
by Random Forest with default parameters. (b) The recommended
trimming schemes for attributes raiseHand and discuss.

publishing the dataset for his company’s annual stakeholder
meeting and must abide by the GDPR.

TABLE 3
Selected attributes from the home insurance dataset. The unocc and
claim3years attributes are considered sensitive.

Attribute | DataType | Description

lastPrem Numerical Total premium for the prior year.
yearBuild Numerical Year of house construction.

specPrem Numerical Premium for personal property.

unocc Numerical Number of days house is unoccupied.
alarm categorical Appropriate alarm.

lock categorical Appropriate lock.

riskRate Numerical Geographic risk for buildings.
claim3years | Categorical | Whether there was loss in last 3 years.
sex Categorical | Customer sex.

Unfortunately, his adversary has a great deal of back-
ground knowledge, in the form of their own insurance
dataset. We simulate this by sampling a second (non-
repeating) subset of 10, 000 records from [50]. His adversary
will use this auxiliary dataset to infer private information
from customers—specifically, unocc and claim3years val-
ues. Fortunately, the data owner has access to this second
dataset, and will use it to construct his defenses.

He begins by loading both datasets into Umbra, accept-
ing the default split points (for numerical attributes) and
state categories (for categorical attributes). He then com-
pares the inference graphs between the two datasets (see
Fig. [10). Broadly, the state definitions and the conditional
probabilities (i.e., nodes and edges) across the two graphs
are very similar, indicating the auxiliary dataset will be good
for inference attacks on his dataset. For example, if a pre-
mium was low in the past year (the lastPrem: [49.77~94.79]
state), the customer’s house was probably in a non-occupied
status for a long timespan (unocc: (4~181]). Alternatively,
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(a) The inference graph constructed by the auxiliary dataset
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Fig. 10. The inference graphs constructed for the data owner on for the
home insurance datasets.

some state definitions differ between the graphs. In his infer-
ence graph, the specPrem attribute has a range [0~389.05],
while the auxiliary dataset’s maximum is only 209.06. To
provide consistency, he has Umbra modify the state defini-
tions in the auxiliary dataset’s to match the original.

Now, when he examines in detail the explicit inferences
for unocc based on lastPrem, he notices the graphs have
differing confidences: the conditional probability of last-
Prem: (49.77~94.49] is 0.56 in the auxiliary dataset, lower
than the 0.64 in his dataset. He pops up the conditional
probability table in the auxiliary dataset’s inference graph
(see Fig. a)) and artificially increases the value of this
state (the P(A|B) value) to 0.64. In this way, if the true corre-
lation between these states inadvertently becomes public, an
adversary will not be able to take advantage of this higher
correlation value.

Using inferences from the auxiliary dataset, he navigates
to the Data Sanitization Stage and Umbra recommends a set
of schemes. In particular, the schemes include the removal
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of all occurrences in the state lastPrem: (49.77~94.79],
and a majority of the occurrences in the state lastPrem:
(342.39~1175.25] (see Fig. . Such an excessive amount of
deletions is not desirable, so he checks for alternate solutions
by clicking these states’ bars in the Data Table View.

lastPrem

lock sex

100%
80%
60%
40%

20%
0% 96% 14K%
\ N a1 40239 g25 F M N
o115 1e o AT
% (Call (515{7—~

0%

- I

Fig. 11. The attribute distributions of the home insurance data processed
by the recommended solutions.

For the state lastPrem: (49.77~94.79], no alternate solu-
tions exist—the occurrences must be entirely deleted. How-
ever, for the state lastPrem: (342.39~1175.25], an alternate
scheme does exist (see the triangles labeled S1 and S2 in
Fig. [12). Unfortunately, neither scheme preserves the last-
Prem: (342.39~1175.25], as states defined by the lastPrem
attribute directly contribute to the inferences of both unocc
and claim3years states. Hence, he has no choice but to ac-
cept the default recommendations. The takeaway is that the
lastPrem attribute is highly linked to sensitive information;
only the state with the lowest range of values (lastPrem:
(52.38~94.79]) can be preserved.

sex: N

unocc: [0~4]
alarm: N
lock: Y.

specPrem: [0~4.18]
riskRate: [0~23]

yearBuild: [1749~1920]

\ ;
\.clalmSyears: N

Fig. 12. The solution overview of a group with alternative solutions.

Finally, in the Results Verification Stage, he tests his
constructed defenses using a Decision Tree model. The
simulated attack—again using the auxiliary dataset—only
returns a 0.1% true positive rate (3 total records) for unocc:
(4~181] (a decrease from 1.0%, 30 records).

8 DISCUSSION

In this section, we summarize feedback from a trio of
domain experts, and provide a discussion on the strengths
and limitations of our approach.

1077-2626 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: ASU Library. Downloaded on May 25,2021 at 16:00:53 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2020.3037670, IEEE

Transactions on Visualization and Computer Graphics

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

8.1 Expert Reviews

To collect empirical feedback about Umbra, we conducted a
set of expert review sessions with three professors (P1—P3)
with at least five years experience researching data privacy
preservation (primarily via automated, non-interactive ap-
proaches). The intent in these sessions was to holistically
assess our approach: not only Umbra’s interface designs,
but also its three-stage workflow and use of Bayesian-
based inference for defense construction. Each session was
conducted as a three-part discussion: (1) discussion of auto-
mated approaches, (2) discussion of the validity of Bayesian-
based defense construction, and (3) an interactive system
demo with Umbra.

(1) Validating Bayesian inference for defense construc-
tion. We first explained how Umbra uses Bayesian network
inferences to identify sensitive states which can be modified
(or removed) via the application of schemes to preserve
privacy. All experts confirmed it is reasonable and effective
to fix privacy issues by removing combinations of states.
One discussed concern of P3 was scalability: enumerating
all state combinations can be challenging when the dataset
contains hundreds or thousands of states. P35 also wondered
a differential privacy approach would achieve superior re-
sults, compared to the data trimming we use (see Section[8.5]
for a discussion of this).

(2) Interactive system demo. Next, we conducted a live
system demo with the each expert. We began by walking
through Umbra’s functionality, showing examples of how
sensitive states can be identified, analyzed, and preserved.
At any time, experts could ask questions about the system
or provide feedback or critiques. While the demo was semi-
structured in that we demonstrated both Umbra’s three-
stage workflow and the specific visualizations and interac-
tions in each of its stages, demonstration and interaction
with Umbra’s specific features was allowed to freely flow
based on the verbal discussion between ourselves and the
expert.

All users were enthusiastic about the system. Py said,
“The system is well-designed. We never thought about showing
security and privacy in such a way!” He expressed a desire to
use our system as a way explain privacy issues and privacy
preserving processes to non-professionals, a comment we
find particularly interesting as Umbra’s domain abstraction
requires users with expertise in Bayesian modeling of infer-
ences and privacy protection methods.

Notably, P53 felt that our system has the ability to com-
pensate for the shortcomings of automatic methods. For
instance, he could easily identify which states needed to be
deleted, thanks to the intuitive inference graph visualization
of correlations between states. He also considered the data
table and data trimming views as significantly helpful to
the privacy preservation process. For the Attack Simulation
View, he suggested using a percentage to summarize the
results (as opposed to only the occurrence counts). Taking
this advice, we updated Umbra and showed percentages
and amount simultaneously in the reports of attack results
(see Fig.[2(g)).

(3) System usage. P; was invited to use the system
and give further feedbacks. After a three-hour usage, P;
considered Umbra as an full-featured system for privacy
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preserving. P; said, “The user interface of the system is
simple to use and responsive in short time.” and “In multi-
ple tests of the system, the data sanitized by the system can
always reduce the accuracy of inferring sensitive attributes.”

TABLE 4
Computation time (in milliseconds) for the first two stages with different
combinations of record amount and attribute amount.

ttribute | 5 | 10 | 15
#Record Statel ~Stage2 | Statel ~Stage2 | Statel Stage2
500 21 36 599 262 380 1,495
1,000 113 193 712 2,495 521 4,929
5,000 689 1,323 | 1,376 28,134 | 3,257 125,321
10,000 | 854 1,857 | 2,328 24,931 | 4,857 196,544

8.2 Scalability and Robustness

We tested the efficiency of our approach by automatically
running the first two workflow stages with various-sized
sampled subsets of the Home Insurance Dataset [50]—
between 500 and 10,000 records, with 5, 10, and 15 attributes
each. To limit the number of states, we extracted categorical
attributes with two categories and defined numerical states
with medians as split points. We tested our system on a
desktop with 16G memory and 4 Intel Core i7 4770 at 3.4
GHz processors. For each subset, the average computation
time over ten runs is listed in Table [

The results demonstrate that when excessive states ex-
ist, it is impossible to get timely recommendations. This
confirms P3’s observation that enumerating all combina-
tions severely reduces efficiency. Fortunately, the process
of recommending schemes—after generating an inference
graph—can easily be streamlined by using state-of-the-art
software engineering practices, like the incremental ap-
proach based on MapReduce proposed by Yue et al. [51].
In practice, the scheme with the lowest utility loss always
removes the states that have high correlations with sensitive
states. If we need to provide solutions for a dataset with
excessive states, we can start construction of the state set
from the states close to sensitive states in the inference
graph. For instance, we can limit the search space to the
third-order neighbors of sensitive states, meaning that only
a minority of sets need to be considered.

Unfortunately, arbitrarily limiting the search space may
cause the optimum solution to be missed in special cases. In
Umbra, we do not limit the search space when processing
datasets, which guarantees optimum recommendations. We
additionally exclude sets whose subsets meet privacy pre-
serving requirements with a lower number of states, which
improves performance.

8.3 Defining States: Specific or General?

Our current workflow allows users to define states only
by the values of a single attribute. In real-world scenarios,
inferences may involve subtle and/or complex relationships
across multiple attributes. For instance, an inference could
be written as, “people who are cheerful and capable of
working have more chances to get a satisfying job.” The
state set of “being cheerful and capable of working” can
actually be regarded as two states—personality: cheerful and
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ability: good. In the inference extraction process, we consider
complex states as a group of one-attribute states that occur
simultaneously.

A comprehensive state definition method, supporting
complex (and potentially even fuzzy) states, can guide our
system to focus on certain inferences. However, such meth-
ods need more specific definitions and a more decentralized
description to explain inferences, which will increase users’
learning and interaction load. Moreover, users may miss
important inferences, because rules-based definitions limit
the search space of the backend algorithm. That is the reason
why we take the current state definition method for Umbra.

8.4 Limitation on Inference Depiction

Although edges with opacity are capable of explaining the
inferences based on one state, we found that paths are not
efficient for depicting inferences. This is because conditional
probabilities Pr(S4|Sp, Sc) are obtained by counting the
occurrences of S4 given Sp and Sc from the data sets,
instead of operating Pr(S4|Sg) and Pr(S4|S¢). Inferences
with multiple states can hardly be presented by means of
opacity-modulated paths.

Distinct non-sensitive condition combinations can lead
to different occurrence probabilities of sensitive states,
which trigger different privacy exposure risks. Thus, there
is a strong need to make up for this deficiency. Neither the
state set chart or the data table view can intuitively explain
the effect of increasing or decreasing a state on an inference.
In the future, we plan to elaborate more details of inferences
in an inference view.

8.5 Sanitization Alternatives

Umbra currently focuses on sanitizing datasets by remov-
ing certain sets of attribute values (data trimming), which
is proved to be effective [26]. As mentioned in Sec.
there exist several sanitization alternatives, such as differ-
ential privacy approaches [19], [52] (which were brought up
by P3 in his expert review session). However, differential
approaches contain their own complexities. For example,
explaining data changes caused by differential privacy san-
itization has its own interpretation difficulties and would
require a significantly different visualization designs. In
addition, much like this initial iteration of Umbra requires
users with knowledge of Bayesian techniques, systems
that leverage differential privacy require users with expert
knowledge about those types of approaches.

Other sanitization approaches, such as adding noise
to attribute values, can mean that no states are actu-
ally removed or merged. Unfortunately, randomization ap-
proaches mean that the values in each state have a certain
probability of being fake, and as a result the dataset contains
some amount of error (incorrect data records) within it. In
contrast, the sanitized datasets produced by Umbra only
contain true attribute values. Depending on a data owner’s
desires as well as the application context of the dataset that
is currently being sanitized (a data owner might ask, “can a
small amount of error be allowed?”), alternative sanitization
schemes might be preferred [37]. That said, a full inves-
tigation of alternative sanitization schemes is beyond the
scope of the current work, though it should certainly be
investigated in the future.
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8.6 What About Data Subjects and Novice Users?

Umbra is intended for data owners with understanding of
privacy protection models and Bayesian statistics. While
data subjects could potentially use systems like Umbra for
personal data management, such as verifying the protection
status of their own data records (DR®), it’s likely such
systems are overwhelming in terms of privacy models,
Bayesian statistics, and visual encodings. Prior research
suggests that novice users can have trouble reasoning about
complex concepts such as privacy modeling [53], [54],
Bayesian probabilities and statistics [39], [40], and even
novel visualization encodings [55], [56], [57]]. Communicat-
ing highly technical concepts to such users—not only the
vast majority of data subjects, but likely a large number of
data owners without sufficient technical expertise—in ways
that are easily digestible and interpretable is a non-trivial
task, and one that is outside the scope of this current work.

9 CONCLUSION

Inference attacks are intractable due to distinct inferences
applied by adversaries with different background knowl-
edge. We present a visual analytics approach as a three-stage
workflow to simulate the inference behaviors of adversaries
and seek appropriate processing to effectively block the
underlying inferences about sensitive states. Intuitive visual
designs allow users to learn the privacy preserving process
without excessive learning costs.

We demonstrate in case studies and expert reviews that
Umbra meets the needs of users to understand automatic
models and follow the changes of datasets that occur dur-
ing sanitization. In particular, the inference graph view is
especially effective for visualizing the sources of privacy
exposure risks from multiple perspectives and customizing
utility criteria reasonably. Umbra thus shows promise to
defend against inference attacks.
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