Appendix

This supplemental document contains discussion and figures that due to space constraints, could not fit into the main paper. This is intended to assist with reader understanding by providing more formal discussion of topics, and to give images that either could not fit into the main paper, or were possibly too small to easily see.

10 Categorizing Our Approach in the Visual Parameter Space Analysis Framework

In 33, Sedlmair et al. define a conceptual framework for analysis of visual parameter space. This framework is for pertinent applications to describe, discuss, and evaluate visual parameter space applications (including predictive applications). They define three main components to their framework: 1) a data flow model for describing data generation, derivation, and prediction, 2) a set of navigation strategies, and 3) typical analysis tasks for validating parameter analytics. We now summarize our application in the context this framework and its key terms.

1) Data flow model For generating our input space, we use a set of EpiSimS runs as our "sampling" space. This input is very coarse, as it only consists of approximately 100 runs. The runs direct outputs are multi-variate and highly dimensional, so we use derivation to generate aggregated statistical measures for each run. Prediction, as can be guessed by the title and theme of this paper, is also implemented.

2) Navigation strategies We employ a global-to-local navigation strategy. Taking our large number of sample points, we build a model that serves as an overview of our dataset. Performing predictions investigates individual parameter configurations, to see how the output time series and spatial mapping. Although simulation steering might seem a natural fit for our simulation, this is unfeasible for EpiSimS, due to the long run- and post-processing time required for each run. Instead, we allow an author to export the particular input parameter configurations as a script for running EpiSimS.

3) Analysis Tasks Sedlmair et al. also describe a number of potential analysis tasks that can be explored, and we use some of them for our use case examples in Section 6. Specifically, we are concerned with the ideas of sensitivity in the built models and predictions, as well as outliers of various runs and input parameters in EpiSimS.

11 Formalism for the Predictive Models

This section mathematically defines the predictive model from Section 4.1.

11.1 Simple Linear Regression

Formally, we define a linear regression model as:

\[Y = X \beta \]

\[Y = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}, X = \begin{bmatrix} x_{1,1} & \cdots & x_{1,p} \\ \vdots & \ddots & \vdots \\ x_{n,1} & \cdots & x_{n,p} \end{bmatrix}, \beta = \begin{bmatrix} \beta_1 \\ \vdots \\ \beta_p \end{bmatrix} \]

where \(n \) is the number of runs of input data set, \(p \) is the number of parameters, and \(\beta \) is estimated by \(\hat{\beta} \), given by:

\[\hat{\beta} = (X^T X)^{-1} X^T Y \]

If we define \(X_{pred} \) as a vector of input parameters to predict on, and we want to get the fitted value \(\hat{Y} \) (the output time series value), we use the following formula:

\[\hat{Y} = X_{pred} \hat{\beta} \]

Note that this \(\hat{Y} \) only gives the predicted output for a single timestep. This means we need to calculate the regression for each timestep independently. Therefore, \(m \), which represents the overall predictive model, can be represented by \(Y_i \) for each \(i \) day.

11.2 Stepwise Selection Model with Interactive Terms

Formally, the stepwise selection linear model still has the same expression as the linear regression model, but with different \(X \), defined as:

\[y_i = \beta_1 x_{i,1} + \cdots + \beta_p x_{i,p} + \beta_{p+1} x_{i,j} x_{i,k} \]

\[X = \begin{bmatrix} x_{1,1} & x_{1,2} & \cdots & x_{1,p} & x_{1,j} x_{1,k} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ x_{n,1} & x_{n,2} & \cdots & x_{n,p} & x_{n,j} x_{n,k} \end{bmatrix} \]

where \(j \neq k, j \) and \(k \) are between 1 to \(n \). The model requires increasing the number of \(\beta \)'s the same as with the number of columns in the \(X \) matrix. \(\beta_{p+1} x_{ar^k} \) are interaction terms.

11.3 Nonparametric Model

For a nonparametric model, the overall curve’s shape is generated; each day’s individual value is derived from the curve’s structure. This is in contrast to the regression models above, which predict individual timesteps, and then the output curve is pieced together. For our model, we fit the curve as a generated bell curve. We define three features of the curve: \(f_1, f_2, \) and \(f_3 \), whose value can be derived from each input time series points \(y \).

\[y = \exp(-\frac{(x - f_1)^2}{2f_2^2}) \star f_2 \]

\(f_1 = x(\text{max}(y_i)) \) is the day that the run’s peak occurs on. The peak’s value is the second feature, \(f_2 = \text{max}(y_i) \). This means the peak point for a time series \(y \) has the coordinates \((f_1(y), f_2(y))\). \(f_3 \) determines how wide the bell curve is. This is usually done using a single \(\sigma \) point, which is what we do as well.

Each input run can be described by its three features. We take this feature-described run set and then build a single linear regression model using the features and their corresponding input parameter vectors \(\beta \) (in the linear regression model). When given an input parameter vector \(X_{pred} \), the model can simply output the predicted \(f_1, f_2, \) and \(f_3 \) and generate the curve. To see what the outputted value is for a particular day, simply find that x-spot on the curve and find it’s \(y \)-value.

Figure 10 references one issue with nonparametric models, as they pertain to regression. The confidence and prediction intervals are not temporally bounded to the predicted day. Instead, they are defined as two trace curves around the predicted curve. The peaks of these two curves form the opposite edges of a bounding box that contains the actual predicted peak. To get a usable bounding curve for our visualization, we freeze the \(f_2 \) bound and slide the \(f_1 \) bounds together until they orient over the top of the predicted trace curve.

![Figure 10: The confidence and prediction intervals for the nonparametric model define a bounding box that the predicted curve’s peak will be within (i.e., the \(f_1 \) and \(f_2 \) will be within these bounds). To get a suitable interval bounding for our viewer, we freeze the \(f_2 \) feature, and slide the \(f_1 \) feature along the x-axis until it is centered at the peak day of the predicted time series.](image-url)
day, build the predictive spatial map as a set of geospatial points. The points are returned, and a KDE converts them into a heat map view for the front end viewer.

t𝑝 ← prediction’s time series
deltas ← empty list with length = length(t𝑝)
z ← number of segments desired

build deltas list
for timestep k from 1 to length(t𝑝) {
 deltas(k) ← |t𝑝(k) − t𝑝(k+1)|
 # deltas(k) ← √deltas(k) if desired
}

initialize segments
segments ← list of size length(t𝑝) with
 segments(k).delta ← delta(k),
 segments(k).start ← k,
 segments(k).end ← k

hierarchically cluster segments to size = z
while (length(segments)>z) {
 k ← position in segments with smallest delta
 segment(k).end ← segments(k+1).end
 segment(k).delta ← segments(k).delta +
 segments(k+1).delta
 remove segments(k+1) from list
}

find the day to use for each segment
for timestep k from 1 to z
 s ← segments(k)
 s.dayToUse ← day of the delta that’s closest to the mean of all deltas from
 deltas(s.start) to deltas(s.end)

generate the spatial prediction maps
cruns ← list of closest runs to t𝑝
 based on Euclidean distance
maps ← empty list with length = z
for each day k in segments.dayToUse
 valpred ← t𝑝(k)
 for each c_i in cruns
 valc ← c_i’s time series value at day k
 g ← valpred/valc
 cmap(k) ← density points for c_i at day k
 for each point pt in cmap(k)
 pt ← pt∗g
 maps_k ← average of each c_i’s cmap(k)
return maps
apply KDE to each maps_k to convert to heat map

13 ADDITIONAL FIGURES
This section displays enlarged and additional figures from the paper.
Fig. 14: These are the three built emulators for Use Case One.

Fig. 15: These are the predictions from the three built emulators in Use Case One, with input parameters set according to Figure 13. Notice that because their predicted output time series are not the same, the sets of closest runs are also different. This affects the spatial predictions (the map views).
Fig. 16: These are the three built emulators for Use Case Two, which were built from 106 runs and seven input parameters. Note that each model has error residual outliers and a set of runs that dominate the run influences bar chart.

(a) Linear regression (LR) emulator with 106 runs

(b) Nonparametric (NP) emulator with 106 runs

(c) Stepwise Selection (SS) emulator with 106 runs

Fig. 17: Removing the four highest ranked runs (in the run influences chart) improved each model considerably (and dropped the schoolIo parameter due to linearity). Error residual outliers are removed, the run influences bar charts are more stabilized. In the NP model, the MSE and R^2 values are both improved considerably (in the LR and SS emulators these also improve, but the change is small).

(a) Linear regression (LR) emulator with 102 runs

(b) Nonparametric (NP) emulator with 102 runs

(c) Stepwise Selection (SS) emulator with 102 runs